hirax.net::Keywords::「Fourier」のブログ



1999-01-10[n年前へ]

宇宙人はどこにいる?  share on Tumblr 

画像復元を勉強してみたい その1

 知人から「自称UFO写真」というのものが冗談半分(いや100%位か)で送られてきた。その写真はボケボケの画像なので何がなんだかなんだかわからない。そこで、ぼけぼけ画像を復元する方法を勉強してみたい。UFOは冗談として、画像復元において進んでいるのは天文分野である。そこで、このようなタイトルなのである。もちろん、画像復元の問題は奥が深すぎるので、じっくりと時間をかけてみる。今回はMathematicaを使って試行錯誤を行った。

 ボケ画像を復元するには、ボケ画像がどのように出来ているかを考えなければならない。そこで、ごく単純なぼけ画像を考えてみる。まずは以下の画像のような場合である。

左の点画像が右のようにボケる
画像:1
画像:2
 右の点画像が何らかの理由で右の画像のようにボケる場合だ。焦点のボケた写真などはこんな感じだろう。例えば、これはレンズの焦点合わせがおかしいカメラの画像だと思ってみる。そのカメラで風景を撮るとこのようになる。
本来、左のような風景がボケて右の写真のようになる。
画像:3
画像:4
 偶然、写真にカメラが写っているが、偶然である。別にそのカメラが焦点がボケボケといっているわけではない。今回、やりたいことは右上の写真(画像:4)を元に、左上の写真(画像:3)を復元したいということである。

 画像:1のような点画像が、画像:2のような分布のボケ画像になるとすると、次のような関係が成り立つ。

(式:1) 画像:4 = 画像:3 * 画像:2

画像:1のような点画像が画像:2になるなら、それを参照すれば、画像:3のような点画像の集合がどう
ボケるかは計算できる。つまり、それが画像:4になる。ここで、*はコンボリューションを表している。
 よくある信号処理の話で言えば、画像:2はインパルス応答である。といっても、これはごくごく単純な場合(線形シフトインバリアントとかいろいろ条件がある)の話である。まずはそういう簡単な場合から始めてみる。

 このようなごく単純な場合には

(式:2) 画像:3 = 画像:4 * (1/画像:2)

とすれば、画像:3を復元できることになる。

そこで、まずは単純な1次元データで考える。下の画像:5のようにボケる場合を考える。ここでは、ガウス分布にボケるようにしてある。

赤い線で表したパルスデータが水色で表した分布にボケる
画像:5
(式:1より) ボケ画像 = オリジナル画像 * ボケ具合
であったが、* すなわち、コンボリューションは
逆フーリエ変換(フーリエ変換(オリジナル画像) x フーリエ変換(ボケ具合))
と表すことができる。つまり、周波数領域で掛け算をすれば良いわけである。
左がボケ画像、右がその周波数領域(フーリエ変換)
画像:6
画像:7
 右のボケ画像の周波数表示を見れば低周波数の量が多いのがわかる。結局、このモデルではボケると低周波数を増やすことになる。逆に(式:2)では高周波数の量を増やすことに相当する。だから、Photoshopなどの「シャープ」というプラグインはラプラシアンを用いて、高周波を増やしてやることでボケ低減を行っている。それほど、不自然ではない。しかし、そう近い画像復元ができるわけでもない。

 それでは、試しに適当な1次元データをつくって、画像:6とコンボリューションをとってやり、ボケさせてみる。

左が原画像、右が画像:6と画像:8のコンボリューションをとったボケ画像
画像:8
画像:9
 画像:8のパルスデータは、画像:9ではボケてしまい、判別不能である。そこで、

逆フーリエ変換(フーリエ変換(画像:9) / フーリエ変換(画像:7))

= InverseFourier[Fourier[Image8] / Fourier[Image6]]; (*Mathematica*)

とやると、次のデータが得られる。

復元されたデータ
画像:10
 これがインバースフィルターによる画像復元の方法である。FIR(Finite InpulseResponse)フィルタなどだろう。ところで、

(式:2) 画像:3 = 画像:4 * (1/画像:2)

を見るとわかるが、画像:2が周波数領域で0になる点があったりすると、計算することができない。また、0に近いとむやみな高周波数の増幅が行われて使えない。

 そこで、この方法の修正として、ウィーナフィルターなどの最小平均自乗誤差フィルターがある。これにも多くの不自然な条件のもとに計算される(らしい)。しかし、infoseek辺りで探した限りでは、ウィーナフィルターを用いた画像復元の標準であるらしい。

この方法は先の逆変換に対して、次のように変形されたものである。Mathematicaの表記をそのまま貼り付けたのでわかりにくいかもしれない。

Noise ノイズのパワースペクトル
Signal 信号のパワースペクトル
Boke ボケる様子のインパルス応答
Conjugate 複素共役
BokeData ボケ画像
ResData1 計算した復元画像

Boke1 = (Boke^2 + Noise/Signal)/Conjugate[Boke]; (*Mathematica*)
ResData1 = InverseFourier[Fourier[BokeData] / Fourier[Boke1]]; (*Mathematica*)

である。Noise/SignalはS/N比の逆数であるから、SN比の大きいところではインバースフィルターに近づく。また、インバースフィルターの計算不能な点が消えている。

 これを使って復元してみたのが、次のデータである。

ウィーナフィルターを用いた復元
画像:11
 他にも、いろいろ変形っぽいものがあるが、とりあえず、1次元での練習はここまでにして、2次元で画像復元を行ってみる。

 まずは、ボケのフィルター(PSF=PointSpreadFunction(どのようにボケるかを示すもの)、2次元のインパルス応答)である。

ボケのフィルター(インパルス応答)
画像:12
 それでは、画像をボケさせる。右のボケ画像が全体的に暗いのは左とレンジが表示の違うからである。同じレンジにすると真っ白(真ん中辺りはちょっと灰色)になる。
左がオリジナル画像、右はボケた画像
画像:13
画像:14
 それでは、インバースフィルターを用いて画像を復元させてみる。
復元した画像
 うまく再現できている。今回はノイズも混入していないしPSF(PointSpreadFunction)もわかっているのだから、復元できて当然である。他の射影フィルタ、最大エントロピー・フィルタ、一般逆行列法、SVD法等については今回はまだ挑戦してみていない。
 その他線形の画像復元法をいくつか調べたが、ウィーナフィルターやインバースフィルターとほとんど同じような物が(素人目には)多かった。そこで、ウィーナフィルタなどとはやり方がかなり異なるものについて、いずれ挑戦してみたい。

 関係はないが、ウィナーと言えばサイバネティクスが思い浮かんでしまう。当然、ロゲルギストが連想されるわけだが、文庫本か何かで岩波版と中公版の「物理の散歩道」が安く売り出されないのだろうか?売れると思うんだけど。新書版は高すぎる。

 宇宙人はどこにいるか? そういった話は専門家に聞いて欲しい。わからないとは思うが。

................................................................................

 さて、ここからは、1999.01.24に書いている。シンクロニシティとでも言うのか、今回の一週間後の1999.01.17に
日本テレビ系『特命リサーチ200X』で

地球外生命体は存在するのか?( http://www.ntv.co.jp/FERC/research/19990117/f0220.html )

という回があった。何とこの回のコメンテーターは先の専門家と同じなのだ。偶然とは面白いものだ。

1999-01-14[n年前へ]

ボケたエアーブラシで細かな字がかけるか?  share on Tumblr 

画像復元を勉強してみたい その2

「宇宙人はどこにいる? - 画像復元を勉強してみたい その1-」ではボケた画像からオリジナルのシャープな画像を復元してみた。前回の話を例えて言うと、

  1. 太郎君が細かい字をエアーブラシで書いた。
  2. ボケボケのエアーブラシを使ったから、ボケボケの画になった。
  3. そのボケボケの画から、太郎君が何を画こうとしたか、考える。

ということであった。
 今回、やってみたいのは以下のようなことである。

  1. 太郎君は太いエアーブラシで字を書きたい。
  2. しかも細かな字を書きたい。
  3. そんなことができるか?

 直感的には、ボケボケのエアーブラシで細かい字など書けないように思う。その直感が正しいか調べてみたい。考え方は前回と同じく、

 出力画像から、ボケ分布でデコンボリューション処理により、オリジナルの画像を計算する。

というやり方である。前回と違うのは出力画像がシャープな画像(先の例で言うと、細かな字)である、という所である。道具は今回もMathematicaを使う。

 出力したい画像ファイルを読み込む。
<< Utilities`BinaryFiles`
StreamFile = OpenReadBinary["E:\jun\private\dekirukana\ufo\ufo.raw"]
ImageData = Table[ ReadBinary[ StreamFile , Byte] ,{x,64},{y,64}];
ListDensityPlot[ImageData,Mesh->False,PlotRange->{0,255}]

これが得たい出力画像である
画像:1

 この細かな字を太いボケボケなエアーブラシで字を書けるか考える。


 まずは、エアーブラシのボケボケ度をつくる。

(*正規分布=ガウス分布によるぼけパラメータを作成する*)
δ=10;
μ=32;

ListPlot3D[NormalBoke,ColorFunction ->Hue,Mesh->False,PlotRange->All]

ガウス分布のボケ(例で言うと、中央にエアーブラシを吹いた場合に相当する)
画像:2

 ボケボケの太いエアーブラシである。

 デコンボリューション用にガウス分布の場所をずらす。
NormalBoke = RotateRight[NormalBoke,32];
NormalBoke = Transpose[ RotateRight[Transpose[NormalBoke],32] ]; (*上へShift*)
ListPlot3D[NormalBoke,ColorFunction ->Hue,Mesh->False,PlotRange->All]

場所をずらしたボケ
画像:3

 出力画像をエアーブラシのボケボケ度でデコンボリューションする。そうすれば、太郎君がどのように画を画けば良いかがわかる。はたして答えはでるのだろうか?

 計算してみると答えが出てしまう。
SharpImage = Re[InverseFourier[ Fourier[ImageData] / Fourier[NormalBoke]] ];
ListDensityPlot[SharpImage/4,Mesh->False,PlotRange->All]

これが計算されたオリジナル画像
画像:4

 まず、本当にこれ(画像:4)にそってエアーブラシで画を画くと出力画像(画像:1)が再現できるか確認してみる。そこで画像:4と画像:3でコンボリューションしてやる。太郎君に実際にエアーブラシを使って画を画いてもらうわけである。
 それでは、画いてみる。
ResImage = InverseFourier[Fourier[SharpImage] Fourier[NormalBoke]];
ListDensityPlot[Re[ResImage],Mesh->False,PlotRange->All]
出力画像を確認したもの
画像:5

 画像:1が再現できた。つまり、太いボケボケのエアーブラシで細かい字が書けてしまうわけである。直感的には納得しがたい結果である(私だけかもしれないが)。

 これには実はタネがある。画像:4を鳥瞰図でみると判るが、画像4は正負の値が高周波で並んでいる。
ListPlot3D[SharpImage/4,ColorFunction ->Hue,Mesh->False,PlotRange->All]

計算されたオリジナル画像(画像:4の鳥瞰図表示)
画像:6

 太郎君が使ったエアーブラシは太いボケボケのエアーブラシではあるが、吹き量に正負が両方ともあったのである。そのようなエアーブラシを使うと太郎君の腕(高テクニシャン)ならば細かな字が書けるわけだ。どんなパターンもかけるかはどうかまでは知らないが、少なくとも"hirax"という字は画ける。

 前回のような光学系の例でも、これが何に対応しているかはすぐわかるが、一番分かりやすいのは電荷と電位の例だと思う。
 電荷が周囲につくる電位分布はボケボケの分布である。ところが、金属などを適当に配置して、その金属に電位を印加してやると、鋭い電位分布をつくることができる。つまり、ボケボケの分布から鋭い電位分布を作成してやることができる。こちらなら直感的にもすぐ納得できるだろう。その際には、金属表面に電荷が鋭く集中するのも、よく知っている話だ。

 実感用に電場計算を行った例を以下に示しておく。使った道具はCUPSの電場計算プログラムである。CUPSは教育用のプログラム集である。
 一応、2次元膜の例で、金属を配置し、適当に電位を印加し、電位・電荷量計算を行ってみる。

電位分布を表示したもの

もちろん、金属内部では均一な電位である。それを条件に解いているのだから当たり前だが。
 その時の電荷分布を下に示す。金属表面に鋭い電荷分布が生じているのがわかるだろう。
 ここでは大雑把な金属の配置にしてしまったが、格子状の金属配置にして、互い違いに違う極性の電位を印加すれば(細かい字に相当する)、正負の極性の電荷分布が鋭く現れるのは当たり前の話だ。

電荷量分布を表示したもの

 電位、電場、電荷量を一緒に示しておく。

電位(左上)、電場の大きさ(左下)、電荷量(右上)、電場(右下)

 今回の話は、単なる計算上の話である。それに、何かどこかで仮定を間違っているような気もするんだよなぁ。信用度アルファ版だからまぁいいか...



■Powered by yagm.net