1999-09-26[n年前へ]
■デバイスドライバーは仮免
ClearTypeの秘密
昨年、COMDEX/Fall '98においてMicrosoftが発表した「ClearType」技術というものがある。液晶ディスプレイなどの表示の解像度をソフトウェアのみで向上させるという技術である。PCだけでなく、液晶を使った電子ブックなどをターゲットにしているという。(参照:http://www.zdnet.co.jp/news/9811/16/gates.html)
技術の詳細については、「特許申請中」ということで、明らかにされていない。しかし、その技術について推論している人は数多くいる。例えば、
- Optimising LCD display of text( http://oxy.sfx.co.nz/lcdtype/ )
- The Technology of Sub-Pixel FontRendering ( http://grc.com/cleartype.htm )
ビックリすることに、確かに効果があるのである。カラーシフティングによりシャッキリした文字になるのだ。しかも滑らかなのである。デジタル接続の液晶を用いている方は確認すると面白いと思う。
もっとも、こういう画像はWEB上で納得するのは難しい。JPEGのような圧縮画像では、情報が完全には保存されず、意図した出力ができないからである。とりあえず、デジタル接続の液晶ディスプレイを使っている方はとにかく試してみると良い。目からウロコである。
さて、この原理であるが、カラーシフトについては色々なところで説明してあるが、若干わかりにくい画像例が多い。そこで、自分流に解釈しなおして考えてみたい。そして、実験してみようと思う。
まずは、右上から左下に走る黒字に白斜線を考えてみる。1ドット幅で、しかも、上から下へ行く間に1ドット右から左にずれるようなものである。液晶の1ドットはRGBが縦に並んでいる。例えば、
で計測した画像例だと、 1ドット幅で、しかも、上から下へ行く間に1ドット右から左にずれる黒字に白い斜線を考えてみる。これはそのような斜線を拡大したものである。
そのような斜線を液晶で描くと通常は下の左図のようになる。通常の処理が左で、カラーシフトを用いた処理が右である。通常の処理ではRGBの位置を同じものとして処理しているので、RGBそれぞれが同じように変化している。しかし、カラーシフトを用いた処理においては、RGBの各位置が異なっていることを考慮の上、処理を行ってみたものである。そのため、滑らかな斜線になっているのがわかると思う。
このように、デバイスの個性を把握した上できちんと生かしてやれば、デバイスの能力をもっと引き出すことができるわけだ。 個性の違いを越える世界というのは、個性を無視した世界とはまったく逆であり、個性を最大限理解して初めて個性の違いを超えることができるのだ。
さて、効果を確認するために、そのようなハーフトーンパターンを作成してみた。ただし、ここで表示している画像はJPEGに変換してしまっているので、効果は現れない。また、本来見えるはずの画像とはかなり異なってしまっているので、各画像をクリックしてオリジナルのTIFファイルをダウンロードして確認して欲しい。
さて、この画像ではわからないだろうが、TIFFファイルの方を見て頂くと、カラーシフトを用いた斜線ハーフトーンの方では、色模様が出現してしまっているのがわかると思う。それは、液晶のガンマ特性を考慮していないからである。
このガンマ補正については、一般的に使われるガンマの意味だけでないものが含まれている。一言では簡単には説明しきれないので、説明は次の機会にする。Free&Crearでもそのガンマ特性を調整する機能がついている。白地に黒文字であるか、黒字に白文字であるかの違いがあることに注意すれば、その数字の意味がわかる。ここでは、その補正をしたものを示すだけにしておく。と、いっても、私が使用している液晶のガンマを考慮したものなので、一般的には役に立たないだろう。
あなたが目にしている画像では、画像ではガンマ補正した方が変に見えていると思う。それは、私とあなたの使っているデバイス(と視点)が異なるからである。ここでやったのと同じやり方で、あなたの液晶に合わせて(なおかつ、同じ視点で)やれば、きれいに出るはずだ。
さて、この結果を私の液晶で見てみると、カラーシフトを用いた斜線(ガンマ補正後)の方ではきれいに斜線のハーフトーンが出ている。ただ、いくつか問題があるのだが、それは次回までの宿題だ。と、いってもヒントはすでに「できるかな?」中でも出現している。ごく最近の話題でも、だ。
このカラーシフト技術は実に単純なアイデアである。しかし、これは実に面白いアイデアであると思う。効果が有る無しに関わらず、こういうネタは私は大好きである。ただ、こういう技術が日本のデバイス屋さんから出てこないことが少し残念だとは思う。デバイスもドライバーも両方作っているところにがんばって欲しいものだ。それまでは、「デバイスドライバーは仮免」といった所だろう。 .....うーん、ちょっと、強引かな。というわけで、何故か私の手元にはPalm-size PCであるCasio E-500があり、そして、久しぶりにVisualStudioをいじり始めるのであった。。
2000-06-08[n年前へ]
■フリフリ乙女と超エロ路線の売上カーブ - 好み分布の累積分布 -
累積分布関数の話を書き始める。モーニング娘に結び付けてみたい気もするが、いいアイデアが思い浮かばない。
2000-08-04[n年前へ]
■あなたの声が、すぐそばにある
エジソン式コップ蓄音機の逆襲
前回、
で学研の「大人の科学」の中から「エジソン式コップ蓄音機」を購入して組み立ててみた、という話を書いた。今回はその続編である。前回は組み立ててはみたが、なかなか良い音を録音・再生することができなかった。しかし、「エジソン式コップ蓄音機」の実力はそんなものではないわけで、今回はその「逆襲」というわけだ。 一応念のために、前回組み立てた「エジソン式コップ蓄音機」の写真を下に示してみよう。
蓄音機の上の部分が「マイク兼スピーカのカップ」、そして輪ゴムで押さえた針がそのカップに取り付けられ、録音メディアとしてのプラスティックカップがその下で回転している。何とも素朴な「科学おもちゃ」である。懐かしの「科学教材」なのである。
下の写真はこの「エジソン式コップ蓄音機」で「音を再生しているところ」である。この写真もまた、前回のページに載っけていたものである。
ところが、「エジソン式コップ蓄音機」の開発者の方がこの写真を見てこんなアドバイスを下さった。
さて、拝見した「エジソン式コップ蓄音機」の溝写真から判断すると、針先が痛んでいるように思えます。ちなみに、切削音はほとんどしないはず(削りかすもあまりでないはず)です。確かにこの写真には削りかすがずいぶん写っているし、ガーという切削音のノイズも凄かった。再生音に対する前回の私の感想は、普通に針先を見てもなかなか判りませんが、顕微鏡で見るとイッパツです。
大きい声で歌っても、再生される「歌声」はとても小さい。いや、再生される「音」はうるさいくらいに大きいのだけれど、「歌声」はかすかにしか聞こえない。と書いてある。しかし、これはどうやら私が作ったものが上手く動かなかっただけのようである。話を伺ってみると、普通は簡単にキレイな音が再生されるものらしい。おそらく、雑に組み立てた私が、どこかで針先をダメにしてしまったのだろう。
なるほど、確かに学研のサイト
- エジソン (http://kids.gakken.co.jp/kit/otona/edison/edison_index.html )
そして、なんと心優しい開発者の方は新品の針まで送って下さったのである。
そして、実は私の手元にはこんな素晴らしい顕微鏡まである。そう、4年の科学2000/04付属の科学教材である。もう、針先を調べないわけにはいかないだろう。というよりは、「この顕微鏡を使って針先を調べないと、怒るよ怒るよ。」と言っているかのような素晴らしいシチュエーションである。もう、調べないわけにはいかないだろう。
というわけで、この素晴らしい顕微鏡を使って針先を見てみたいと思う。早速、「二本の針先」を顕微鏡を使って見てみたものが次の写真である(ホントは違う顕微鏡を使った)。
実はこの針先というものは、あまり鋭くないことがわかる。「付属していた針」も「送って頂いた針」の方も針先は実は平らになっているのだ。もしかしたら、繊維の中に針を通す時には、あまり針先は鋭くない方が実は良いのかもしれない(実はK氏のアイデア)。例えば、繊維の隙間に針を通すようにするために、針先をわざと丸めているなどの理由があるのではないだろうか?木の繊維にそって曲がっていく釘があるように、この針先も繊維を避けながら進むために先を丸めていたりはしないのだろうか?
また、この写真は左右とも同じ倍率である。ということは、ずいぶんと「付属していた針」と「送って頂いた針」で太さが違うことが判るだろう。また、太さと同様に針先の形状も若干違うこともわかる。「付属していた針」の方は円錐の先をスパッと切り取ったような形状をしている。そして、針先には若干のバリがある。一方、「送って頂いた針」の方は円錐の先を丸めたような形状になっている。針先に鋭い部分やバリなどはあまりない。この差は非常に気になるところだ。
ちなみに、「同倍率で撮影したカッターの刃先」はこんな感じだ。もうメチャクチャ鋭いのである。
さて、すぐに送って頂いた針先に交換して録音をし直してみたいところだが、今回は針先は変えなかった。先ず、現時点でどのような現象が起きているかを、調べておきたかったのである。そこで、
- 針先がカップに接触する角度を寝かせる
- 録音時は針を支持するアームがぶれないように固定する
「ノイズがある場合」と「ノイズがない場合」では、ずいぶんと録音溝の様子に違いがあることが判る。もう「ノイズが多い場合」の方では見るからにノイズが多そうであるし、録音溝が無数の傷がついてしまっている。そして、「ノイズがない場合」の方は見るからに「クリアな音」が出そうである。おそらく、「ノイズがある場合」には針先が妙に引っかかりやすくなっているために、こんな無数の傷ができてしまうのだろう。
参考までに、「ノイズが無い場合」の録音溝の断面を撮影したものが次の写真である。写真では判りにくいと思うが、録音溝は中央部がえぐれ、その周囲が盛り上がっている。
(倍率がもう少し高い) |
また、直感的に想像できるように、この録音溝は針先の平らな部分とほぼ同じ大きさであった。判りやすいように、
- 針先 - 「ノイズがない場合の録音溝」 - 「ノイズがある場合の録音溝」 - 録音溝の断面
この写真を眺めていると、「針先のバリがマズイのではないか?」という想像が強くされるだろう。「針先のバリ」が引っかかることが不安定性の全ての原因であり、この針先の平らな部分を丸めてバリをとってみた場合には、キレイな音が出るようになるのではないかという気がしてくる。そこで、針先のバリを取ってそして新しい針との比較をするとどうなるか、それを次に調べてみたい。
とはいえ、このページもずいぶんと写真が多く、思いページになってしまった。そこで、この続きは次回行うことにしたい、と思う。
さて、今回「エジソン式コップ蓄音機」を使って録音実験を繰り返すために、私は近所の100円ショップで10個100円のプラスティック・コップを山のように買った。何しろ、この録音作業はやり直しがきかない。一回、ミスったらそのカップはもう使い物にならないのである(録音用には。もちろん、通常の飲み物の入れ物としては使える)。
100円で10個、つまり1個10円だから、録音可能な時間あたりのカップ単価を考えてみると
- 10円/0.5分
- 10円/7.4分
さて、今回「エジソン式コップ蓄音機」に録音してみた音の再生音はこんな感じだ。ちょっとサイズが大きいが、是非聞いて頂きたいと思う。開発者によれば、「普通に作れば肉声に近いほどのハイファイ音が聞こえる」とのことなので、この再生音は上手く作れなくてもこの位の音は聞こえるという例として考えて欲しい。
こんな「エジソン式コップ蓄音機」のとても素朴な作りの見かけにしては、結構再生音はきれいに聞こえるものだ。まだ、針先を変えていないので、まだまだ変な音であるが、ぜひぜひ静かな部屋で耳をすまして聞いてみてもらいたいと思う。鈴木祥子歌う「あなたを知っているから」の最後のリフレインがあなたの耳にも聞こえるだろうか?耳を澄ませば、こんな言葉が聞こえてくるはずだ。あなたの声がすぐそこにある。
心の中のすぐそばにある。
2000-10-19[n年前へ]
■Evey little thing we ee is magic.
WEBページで作るOscylinderscope
先日、The Reuben H. FleetScience Centerという科学館に遊びに行った。そこで面白いものをみかけた。それはOscylinderScopeという名前のもので、下の写真のようなものだった。
Oscylinderscopeの作者のNorman TuckのWEBサイト
- A Catalog of Kinetic Sculpture byNorman Tuck
- ( http://www.normantuck.com/ )
- TheOscylinderScope
- ( http://www.normantuck.com/catalogPages/oscylinderScope.html)
電気的な変化する信号に合わせて、光の点をsweepさせることで波形を描き出すのがオシロスコープだが、このOscylinderScopeもドラムをい回転させて、ドラム上に描かれた白い線が振動するギターの弦の後ろをsweepして、ギターの弦の振動する様子を描き出すのである。
参考までにNorman TuckがOscylinderScopeに関して取得しているUnites StatesPatent 5,975,911から判りやすそうな図を下に示しておく。揺れる棒の様子がSin波状に見えている、という説明図である。
このOscylinderScopeにはとっても単純だけど素敵な科学的なアイデアと、展示物としてのセンスと、そして何故かちょっとうれしくなるようなバカバカしさが感じられて私はとっても大好きだ。そこで、一ファンとして私も「WEBページで作るOscylinderscope」というのをやってみることにした。
といっても、やることは単純に単なる速く移動する白い線をパソコン画面に映し出すだけである。そして、その前で何かを振動させてその振動の様子を可視化するのである。
まずは、Oscylinderscope風アニメーションGIFだ。おそらくInternetExplorerではゆっくりとしか再生されないと思うが、NetscapeCommunicatorであればプラットホームにもよるが高速に再生することができると思う。少なくとも、Linux上のNetscapeNavigatorではかなり速く再生されるハズだ。
このアニメーションを再生できない環境の人のために、動画ファイル版にしたものもここにおいておく。
- oscylinderscope.avi ( 145kB )
このアニメーションGIFや動画ファイルを再生して、部屋の電気を暗くしてみる。すると、CRTの画面というのはとても明るいので、部屋を暗くしてCRTだけをつけておくと、CRT画面に映し出されている色に部屋が染まる。部屋がそんな風にチカチカした状態で、画面の前で何かを振動させると、アラ不思議その物体の振動の様子が何やら変な風に見えてくる。例えば、真っ直ぐな細い棒を「Oscylinderscope風AVIファイルの前で棒を揺らしてみたところ」である。写真では判りにくいと思うが、真っ直ぐな棒がウニョロウニョロと曲がって見えるだろう。とにかく、真っ直ぐな棒が振動する様子を静止したイメージで目にすることができるのだ。
ところで、私はこんなOscylinderscopeを見ていると、ナポレオンズの「首グルグル・マジック」を連想してしまう。一カ所だけ穴の開いた筒を頭にかぶる。そして、穴の部分から顔を覗かせる。筒を回転させ始めると、なんと顔がずっと見え続ける、つまりエクソシストの少女のように首が回転しているのだ!これがマジックかぁ?と言う人も多いかもしれないが、私はこれこそ本当にmagicそのものだと思う。このマジックには、目に見えていない瞬間に起きていることは結局想像するしかない、という本当の真実と、何故かもう嬉しくなるくらいのバカバカししさが同居していて私は大好きなのだ。他の人はどう思うか知らないけれど。
2000-10-25[n年前へ]
■虹の彼方に。
色覚モドキソフトを作る その7
今年は好きなWEBサイトがいくつも店じまいしてしまった。「わきめも」もそんなサイトの一つだ。その今はもうない「わきめも」の中で、きれいな虹が見えた。だからビールを飲んだ。だけど、目に見えている虹の色は写真のフィルムには写らない。どんなフィルム・CRT・プリンターの出力色空間もとても狭くて、虹の中に見える色は出せないからだ。ビールも虹も「生」に限る。という話があった。もう元のWEBページがあるわけじゃないから、細かいところは違っていたかもしれないけれど、大雑把な内容はこんな感じだった。- ビールも虹も「生」に限る - なんてとてもシブイセリフで良い感じだ。
このセリフの中の「どんなフィルム・CRT・プリンターの出力色空間もとても狭くて、虹の中に見える色は出せないからだ。」というのを図示してみると、下の図のようになる。
例えば、虹の中に見えるスペクトル色はこの図で言うと、黄色の矢印で描いた側の、色で塗りつぶした領域の外枠の色だ。波長の長い単色光、つまり最初は赤色から始まって、波長が短くなるに従い「赤→黄色→緑→青→紫」というようにスペクトル色はつながっている。
この図中に、とあるCRTとプリンターの出力可能な色空間(CCMファイル中に埋め込まれているプロファイル情報を参考にしたもの)を白点線と白実線で示したが、とても狭い領域の色しか出せず、とてもじゃないが虹の中に見えるスペクトル色はこれらの機器では出ないことが判るだろう。
だから、「生」の虹を見たときの感じは写真でもCRTでもプリンターの出力でも味わえないわけだ。おいしいビールは「生」に限る(私の趣味では)のと同じく、虹も「生」に限るのだ。
だから、虹の色と同じ
の時に撮影したような太陽光のスペクトルも、こんな風にWEBページの上で眺めても、それはやっぱり分光器を「生」で覗いている感じはとてもじゃないが味わえない。 こんな、「赤→黄色→緑→青→紫」というスペクトル色を眺めていると、中学の頃の美術の授業を思い出した。その授業の中で、こんな色相環が教科書か何かに載っていて、「こんな色のつながりは「赤→黄色→緑→青→紫」というスペクトル色に対応しているんだよ」と美術の先生に言われた。それを聞いていた私はよく判らなくなって、「すると、何で紫と赤のところで繋がってるのでしょうか??」と先生に聞くと、その先生も「う〜ん。」と悩み始め、しまいには「いつか調べて答えが判ったら、私にも教えてくれたまえ。」と言うのである。今考えてみると、それはとても素晴らしい言葉だった(間違っても皮肉でなくて、本当に素晴らしいと思うのだ)。
色覚のメカニズム 内川恵二 朝倉書店 口絵より |
だけど、「赤→黄色→緑→青→紫」という単色光のスペクトルが波長としては単に一方向に変化していくだけなのに、グルっと一周する感覚を受けるのはとても不思議である。そこで、色感覚モドキソフトを作ってそこらへんの感覚を眺めてみる、つまり「できるかな?」の常套手段である「その謎を見てみよう」と思うのである。
この「色感覚モドキソフト」はいつものように極めて大雑把でチャチな作りである。ソフトの流れとしては次に示すように、
1.光源としては二種類の場合
- RGBのCRTモニタ
- 単色スペクトル光
2.画像を読み込み、画像の任意の場所のRGB値を元に光全体としてのスペクトルを計算する。
3.錐体の分光感度を適当に設定し、Boynton色覚モデルをもとに
- 「赤<->緑」チャンネル
「青<->黄」チャンネル
「輝度」チャンネル
ここに今回作成したtruecolor7を置いておく。細かい使い方は今回は割愛したい。が、多分少し使えば(使う人がいるともそうそう思えないが)、使い方はすぐに判ると思う。
- truecolor7.lzh 522KB
truecolor7の動作画面はこんな感じである。
左上から下に向かって、RGBそれぞれのスペクトル設定、全体でのスペクトル、読み込んだ画像、右上から、錐体の分光感度、反対色応答の出力値である。
画像の任意の場所を調べたければ、BMP画像を読み込んでマウスで好きな場所をなぞるなり、クリックすればよいし、「赤→黄色→緑→青→紫」という単色光のスペクトル色の場合を計算したければ、右下にある「SpectrumColor」ボタンを押せば良い。
さっそく、赤→黄色→緑→青→紫というスペクトル色の反対色応答「モドキ」を見てみたのが次のグラフである。縦軸が「輝度チャンネル」で、向かって左の軸が「青<->黄」チャンネルで、向かって右の軸が「赤<->緑」チャンネルである。この「輝度チャンネル」・「青<->黄」・「赤<->緑」という「感覚的」3次元空間で波長が一方向に変化するスペクトル色を連続的にプロットしてみると、見事に円状につながっていることが判る。「赤<->緑」チャンネルの計算が基本的にはL錐体出力からM錐体出力の差分をとって、さらにS錐体の出力をほんの少しだけ引いてやるという計算をしているため、短波長側でL錐体の感度がM錐体の感度を上回っている(ように実は設定した)のでこんな風になるのだ。単純に波長が短くなるだけなのに、見た感じ何故か紫と赤が近く見える。あくまで、大雑把な話だけれど。
中学の頃の私がこれで納得するとは思えないが、少なくとも今の私はこの円環構造を目にすることができればこれで満足である。
ちなみに、つぎに示すのは輝度が一定になるようにした画像の周辺部をグルッと計算してみたものである。このグラフでは縦軸の「輝度チャンネル」の値はずっと同じで、「青<->黄」チャンネル・「赤<->緑」チャンネル平面内で円環状にグルッと一周しているのがわかると思う。自分自身が下の画像を眺めたときに、つながりが自然だなぁ、あるいは自然じゃないなぁ、と感じる感覚と重ね合わせながら見てみると面白いのではないだろうか。
さて、興味がある方がいらっしゃれば、このバッタもんソフトを使って、ぜひ色々なパラメータを振って色々な画像を読み込んで試行錯誤をしてみてもらいたいと思う。そして、その結果を私に教えていただければとてもうれしい。もちろん、このソフトを使うという話に限らず、面白そうなアイデアがあれば大歓迎である。
さて、虹というとミュージカル「オズの魔法使い」の中でジュディ・ガーランドが歌っていた"OverThe Rainbow"を何故か思い出す。実は、このソフトを作っているときも「ふ〜ん、ふ〜ん、ふ〜んふんふふふ〜ん」と歌詞が判らないまま鼻歌を歌いながら作業していた。歌詞が判らないまま、というのも何なので、せっかくなので調べた歌詞で今回の話を終わらせたいと思う。虹の彼方には…
Somewhere, over the rainbow, skies are blue.And the dreams that you dare to dream really do come true.