hirax.net::Keywords::「シミュレーション」のブログ



2016-04-09[n年前へ]

「こどもごころに計算技術をトッピング」「計算世界をインタラクティブ/没入体験」 

 第56回オープンCAE勉強会@関東(流体など)の発表で使用したスライド(の一部)をここに置きました。発表した演目は、題して「こどもごころに計算技術をトッピング」「計算世界をインタラクティブ/没入体験」のチープ2本立て、です。

 新宿のビルに囲まれた桜咲く公園のベンチに座り、周囲のビルの周りに吹く風を想像しながらパワポスライドを作り、ビルの中で話をして、ビル風の専門家からのアドバイスを受けるという面白い体験をする…のが、2016年の4月9日でした。

2017-01-14[n年前へ]

ライトフィールドプリント最適化のためのBlenderシミュレーション その1 

 いくつもの視点から見た映像から視点変化に応じた見え方を再現するライトフィールド・プリント(インテグラル・フォトグラフィー)を作るために、Blender を使った透明シートへの印刷シミュレーションをしながら、効率的な印刷方法に挑戦してみた。

 どんな場合でも汎用的に使うことができる一般的な画像に対して、視点変化に応じた見え方を再現しようとすると、偏光素子を重ねるなど特殊な方法を使うのでなければ、視野を制限するマスク(アパーチャ)に相当する層を上にプリントした上で、視野変化に応じて見える光(色)をさらにその下にプリントすることになりそうだが、そうすると、次の問題が生じる。変角解像度を両立させるためにはマスク(アパーチャ)を小さくしたくなるが、そうすると画像が暗くなる。

 この問題に対して最適解を出そうとすると、マスクの口径(アパーチャー)が持つ周波数特性を、視点変化に対する見え方変化の周波数特性と一致させたくなる。つまり、もしも、視点が変化しても見え方の変化が小さい方向があれば、その方向に対してはマスクの口径(アパーチャー)を大きくし(周波数特性を鈍くし)、視点変化に対して見え方が敏感に変わる方向があれば、その方向に対しての口径を狭くしたくなる。つまり、高周波が鈍ることを防ぎたくなる。

 というわけで、ライトフィールドプリントの上面に配置したマスク(アパーチャ−)形状を、視点変化に対する見え方の変化(ライトフィールド勾配)に連動した方向性を持つ楕円形状にした画像生成をするPythonコードを書いてみた。そして、スタンフォードの The (New) Stanford Light Field Archiveをサンプル画像として使い、Blenderでライトフィールドプリントのシミュレーションをしてみたのが下の動画だ。

 眺めてみると、マスクサイズを固定とした範囲では、明度と変角解像度という相反する項目の両立が改善したような気もするが、空間方向変化(空間解像度)と連成した処理になっていないこともあり、まだまだ修正すべき項目が多い。…というわけで、次は、変角解像度と空間解像度の最適化を考えてみることにしよう。



■Powered by yagm.net