hirax.net::透け透け水着の物理学 入門編::(2000.03.26)

透け透け水着の物理学 入門編 

透過率の波長依存を探れ


 少し前のことだった。舞台は妙高高原の露天風呂である。同じ職場の人とある話をしていた。話題は仕事に関する話で、主な話題は色々な物質の光の透過率や吸収の話だった。ずいぶん長いこと、そういった話題をしていた。

 しかし、ふと気づくとなにかがおかしい。会話中に出てくる言葉が変なのである。さっきまで話していた「吸収波長」とか、「感度」とかいう言葉は依然として出てくるのだが、それに加えて変な言葉がどうも出ている。「透け透け水着」とか「丸見え」とか「ナイトショット」といった類の言葉である。これは一体どうしたことだ?これは非常にマズイ。

 私たちがいるのは露天風呂である。私たちの数m横の壁の向こうは女性用の露天風呂だ。そこで、私たちは「透け透け水着」と「丸見え撮影」の話題をしているのである。非常に危険なシチュエーションである。逆に、隣の女性用露天風呂に入浴している人がいたならば、とてもイヤなシチュエーションである。隣が「変態さんいらっしゃい」状態だと思ってしまうだろう。

 もちろん、心ある人が聞けば、私達が極めて誠実に「透け透け水着」と「丸見え撮影」の「科学」について論じているのはわかるはずだ。ましてや、私という人間を知っていたならば、なおさらである。
 しかし、周りはもちろん私達の知り合いではないわけで、誤解されても何らおかしくない。いや、誤解されないのが不自然な位である。
 もちろん、私は見えないものを可視化するのが大好きであるし、「32cmの攻防戦」について論じたこともあるが、誤解はしないで欲しい、とあの時周りにいた人達にひとこと言っておきたい。

 さて、その時に話していたのは、ビデオカメラで水着が透けて見える話についてであった。あの有名なSONYの「ナイトショット」機能付きのHandyCamのことである。そのカメラでどうして水着が透けて見えるのかについて論じていたのである。その見える理由を聞かれた私は「透け透け水着は赤外線の透過率が高いから、と言われていますね。」と答えた。

 例えば、「水着、透ける、ビデオ」で検索すれば、そういう解説が数多くある。それに、私は赤外線フィルムを使って風景撮影をするのが好きだったので、いくらか知識もある。しかし、それはあくまでも知識である。実際に水着の赤外線の透過率を調べたことがあるわけでもないし、可視光との差を比較したことがあるわけでもない。それはあくまで知識だけ、である。実証の伴わない知識というのは今ひとつ好きではない(いや、盗撮を実証するわけじゃないけど)。

 そこで、今回は「水着が透ける理由」を実証してみたい、と思うのである。 透ける理由として、よく言われている

  1. 水着の色や生地によって波長毎の光の透過率が異なる
  2. 水着によっては、赤外光は屈折・散乱しにくく、透過率も可視光に比べて高いものがある
  3. 簡単に言えば、その水着は赤外光は透過しやすい、ということである
  4. ということは、赤外光で撮影をする限りにおいて、その水着は半透明であるようなものである
  5. また、可視光の影響を防ぐため、可視光をカットするフィルターを用いて、赤外光のみで撮影をする
  6. すると、なんと水着が透けて見える
というのを実証してみたいのだ。題して、「透け透け水着の物理学」である。一つ一つデータを重ねて、「透け透け水着の物理学」を構築したいと思うのだ。

 さて、先ほどの「透け透け水着は赤外線の透過率が高いから、と言われていますね。」という言葉を実証するためには、色々な生地の透過率を波長毎に調べなければならない。そのためには、光を波長毎に分解する分光器が必要である。そこで、私は

で分光器を作ったわけである。

 前回は、分光器の出力をデジカメで撮影した。しかし、これでは赤外光の計測もしづらい。そこで、秋月で可視・赤外対応のCCDボードを買ってきた。これを前回作成したHIRAX一型分光器に取り付けて、計測を行った。名付けて、「HIRAX一型分光器CCD+」である。
 

秋月で買ったCCDボード 4000円なり

 まずは、その分校計測出力例を示してみたい。下の写真は「CCDカメラで計測したスペクトルに、可視光の色対応を示すカラーバーを上に示したもの」である。これは前回と同じく、太陽光のスペクトルだ。水平軸が波長を示している。左が波長が短い領域であり、右が波長が長い領域である。可視光領域は左の1/3くらいの領域である。
 

太陽光のスペクトル
CCDカメラで計測したスペクトルに、色対応を示すカラーバーを上に示したもの

鮮鋭化処理をかけたもの

 今回は、縦線状に見えるフラウンホーファー線が明らかに数多く見えるのがわかると思う。HIRAX一型分光器自体もスリット幅の改良などで性能がアップしてるのである。

 それでは、まずはいくつかの材料の波長毎の透過率を計測してみたい。まず、使う材料は下に示すような色フィルターである。もちろん、こんな透け透けの材料で作った水着を着ている人なんているわけはない。これは、あくまで例である。
 

色フィルター

 それでは、次に「HIRAX一型分光器CCD+」で計測した波長毎の透過性を示してみよう。まずは、赤色フィルタである。赤色フィルタを使用している部分は、使用していない部分に比べて、赤色(そして赤外領域)以外の波長がカットされているのがわかる。
 

赤色フィルタの透過性を示したもの
(上部がフィルタ使用、下部がフィルタ未使用)
CCDカメラで計測したスペクトルに、色対応を示すカラーバーを上に示したもの

 例えば、赤色が見えづらい人であれば、このフィルターは透過性が非常に低く、「透け透け度」が低いフィルターである、ということになる。また、赤外光は透過しているが、すごく長波長側では透過率がかなり低いことがわかる。

 また、次が黄色であり、赤色フィルタよりも短波長側まで透過性が高くなっていることがわかる。そして、赤外光の透過性は赤色フィルタよりも高い。
 

黄色フィルタの透過性を示したもの
(上部がフィルタ使用、下部がフィルタ未使用)
CCDカメラで計測したスペクトルに、色対応を示すカラーバーを上に示したもの

 次に示す緑色のフィルタの場合は、緑の辺りの波長と赤外領域辺りの透過性が高いことがわかる。よく、ビデオカメラで赤外リモコンなどの赤外光を撮影すると、緑色に写ることがあるが、あれはこういった緑色のフィルタを使用しているのだろうか?
 

緑色フィルタの透過性を示したもの
(上部がフィルタ使用、下部がフィルタ未使用)
CCDカメラで計測したスペクトルに、色対応を示すカラーバーを上に示したもの

 次が青色フィルタである。赤外光の透過性は結構低い、こともわかる。
 

青色フィルタの透過性を示したもの
(上部がフィルタ使用、下部がフィルタ未使用)

CCDカメラで計測したスペクトルに、色対応を示すカラーバーを上に示したもの

 色々、面白いこともある。例えば、赤色フィルタの透過特性と緑色フィルタの透過特性を比べると、重なり合う(透過性が高い)領域(波長)がほとんどないことがわかる。
 

赤色フィルタの透過性を示したもの
から透過光の強さを描いたもの

緑色フィルタの透過性を示したもの
から透過光の強さを描いたもの

 だから、赤色フィルタと緑色フィルタを重ねると、全然透けないわけだ。透過可能な波長領域がないワケである。こういうのを見ると、暗記用の赤色ペンと緑色下敷きの組み合わせを思い出してしまう。
 

赤色フィルタと緑色フィルタを重ねると、全然透けない

 さて、こういう風に材料毎の透過性を計測できるようになったわけである。さらに、赤外線フィルタの透過性を見てみたい。赤外線の波長領域をまずは実感してみたい、ということである。赤外フィルタは赤外リモコンの発光部のカバーを使用してみた。下に示すのが、「赤外フィルタ= 赤外リモコンの発光部のカバー」であり、
 

赤外フィルタ = 赤外リモコンの発光部のカバー

 次が、赤外フィルタの透過性を示したものである。可視光はほとんど通さず、波長の長い赤外光のみ通過させているのがわかる。
 

赤外フィルタの透過性を示したもの(全てフィルターをかけたた)

 さて、あまりにも画像が増えてページが重くなってきた。今回は分光計測を行い、赤外線フィルターの分光感度を計測したところまでで終わりにしたい。次回は、色々な生地の透過分光計測を行う予定である。「色々な生地が可視光では透過率が低くても、赤外光では透けて見えることがあるのか」調べてみたい、と思う。
 

この記事と関係がある他の記事