hirax.net::Keywords::「熱伝導」のブログ



2010-06-26[n年前へ]

水風船をライターの炎であぶると何が起こるか考える!? 第4回 

 「続々 水風船をライターの炎であぶると何が起こるか考える!?」の続きです。実験に使った水を入れた風船を観察してみることにしました。風船の中に水が満ちていた時にはわかりませんでしたが、水がある程度抜けたときのようすを撮影してみたのが下の写真です。写真を眺めてみると、火に炙(あぶ)られていた部分が何だか伸びていることがわかります。横から見ると、その部分がプックリ膨らんだ姿になってしまっています。

 ということは、炎にあたっていた部分は、(実験している時にはわかりませんでしたが)熱せられる間に厚みが変わっていたようです。また、ススがついていない部分がヒトデのような形になっていますが、その(ススがついていない)ヒドデ模様の先端がピンホールになっていることが多いようにも見えます。ただし、これはそういう印象を受けるというだけで、確かではありません。応力集中し、薄くなっている部分に高温の微粒子か何かが付着して、ピンホールが生じたのでしょうか…?

 実験に使ったゴムは保存してありますから、顕微鏡で観察してみたり、ススの付着状況を観察したり、ススの付着状況とピンホールの位置関係など、証拠品をもとに「どんなことが起きているのか・どんなことが起きる可能性があるのか」について、まだまだ色々と確かめてみたり・その過程を考えてみたりしたい、と思います。

水風船をライターの炎であぶると何が起こるか考える!? 第4回水風船をライターの炎であぶると何が起こるか考える!? 第4回水風船をライターの炎であぶると何が起こるか考える!? 第4回水風船をライターの炎であぶると何が起こるか考える!? 第4回






2010-06-27[n年前へ]

水風船をライターの炎であぶると何が起こるか考える!? 第5回 

 「水風船をライターの炎であぶると何が起こるか考える!? 第4回」の続きです。今日は、「炎であぶると何が起こるか考える!?」中の解説、

 水の熱伝導率は樹脂と大差ありません。だから、水が対流しないと、すぐに100℃を超えてしまいそうですから、対流の効果は無視できそうにないですね。  また、水風船のゴム境界における熱伝達係数をαとすれば、風船ゴムへの流入熱量qは炎の温度とゴムの温度差にαを掛けた程度で,もし、 α=20[W/m^2/K]で炎が800℃強なら、qはおよそ16000[W/m^2]程度になりますね。これが風船を通過する熱流束ですから、風船の熱伝導率をλ,厚さhとすれば、ゴム外部表面と内側表面の温度差は ΔT=qh/λ より大きくはなることはありません。ですから、λ=0.16[W/m/K],h=200E-6[m]ならΔT=20℃で,水が100℃になっても表面温度は120℃止まりとなります。
に沿った解析計算を行うJavascriptフォームを作ってみました。各パラメータに適当な数値を入れて(最初に入力されているのが上旬的な値です)、「計算してみる(クリック)」ボタンを押せば、「横軸=風船ゴムの厚み、縦軸=ゴム風船の炎側表面の温度(℃)を計算して、表示します。計算を適当にはしょっている部分もありますが、大雑把な数値を算出することが目的ということで、ご容赦ください。

 ただ、この問題に関しては、色々な状況下における現象をすべて説明しようとするならば、ゴム内側にある水のミクロな状態・ゴム内部の均質性や・熱せられた材料の変形の話・そして炎から出る微粒子なども、さまざまな影響を与えているでしょうから、単純に説明するのは難しいかもしれませんね。


ゴム表面内側の水の温度[℃]:
炎の温度 [℃]:
風船のゴムの最大厚み[μm]:
ゴムの熱伝導率[W/m/K]:
ゴム境界における熱伝達係数[W/m^2 /K]:



水風船をライターの炎であぶると何が起こるか考える!? 第5回熱による水の動きを見る






2010-06-30[n年前へ]

水風船をライターの炎であぶると何が起こるか考える!? 第6回 

 「続々 水風船をライターの炎であぶると何が起こるか考える!?」で、水で満たされている風船を炎で炙(あぶ)ってみる実験をしました。実験をしたのは、そこに至るまでの長い(といっても短い時間でしたが)の盛り上がりがあって伝熱シミュレーション計算や解析計算など、予想大会がなされてきたからです。

 今日は、水が入った風船を炎で熱した時に、風船の底近くの水温度変化を計測した猛者が現れました。(シミュレーション計算の専門家なので)伝熱シミュレーション計算もした上で、今回は、さらに自ら実験もしてみたというカッコ良さです。こういった、口だけでなく実際に何かを提供する人のカッコ良さにはいつも憧れてしまいます。

 その(風呂に入りながら行われたという)実験結果を示したグラフが下に示したものになります。グラフの横軸は、炎で熱し始めてからの時間(秒)で、縦軸は風船の底近くの水温度(℃)になります。数値だけ見ると、「大体こんなものだろう」と思える温度変化になっています。前回の伝熱シミュレーション計算結果と結果が異なっているのは、前のシミュレーション計算では対流の影響を考慮していないことなどが大きな原因かもしれません。

 ところで、この実験をした後の風船を眺めてみると、「水風船をライターの炎であぶると何が起こるか考える!? 第4回」と同じようなススの付き方になっています。面白いものです。ちなみに、実験条件に関する情報としては「外気温は約30℃、加熱源はライターで、途中からゴムが焦げる臭いがしていた、風船は(株)タイガーゴム製(世界初、新素材天然ゴムにより、ゴムの材質が非常によくなりましたとの記述あり)」ということです。

水風船をライターの炎であぶると何が起こるか考える!? 第6回水風船をライターの炎であぶると何が起こるか考える!? 第6回水風船をライターの炎であぶると何が起こるか考える!? 第6回






2012-09-01[n年前へ]

「38℃の風呂に完全全身入浴時の、人体周り熱収支」を考えよう!? 

 中学生が行った自然観察コンクール作品「38℃の日は暑いのに38℃の風呂に入ると熱くないのはなぜか」が面白かった。風呂の中でシュノーケリング全身潜水実験をしたり、服を着たまま風呂に入ったり…という辺りは、探偵ナイトスクープばりのバカバカしさで最高に楽しめる。「それはどうだろう?」と思うデータ解釈や論理もあるけれど、とにかく魅力的だ。

 ところで、「38℃風呂の中でシュノーケリング全身潜水実験」を、ある程度長い時間、たとえば10分程度したとしたら、体温そして皮膚温は一体どうなるだろうか? 人間は、70ワット程度の発熱体である。 ということは、毎秒70ジュールの熱を体から排出しなければ、人の体温は刻々上昇してしまう。 もし、人体の比熱が大雑把に水とほぼ同じだとしてしまうなら、たとえば体重50kgの人がいたとすると、1分あたり0.2℃ほど体温の上昇が続く計算になる。

 風呂の中に全身が浸っていると汗をかいても体を冷やすことはできないから*、結局のところ、体温は38℃より少し高いところに落ち着いて、その38+アルファ℃の体から、38℃の風呂のお湯に向かって熱が流れていくことになるのだろう。そして、皮膚温は38+アルファ℃よりは低く、けれど38℃の風呂温よりは高い程度で落ち着くことになる。

 水の熱伝導度を考えると、1℃弱くらい水温より体温が高い程度で平衡状態になるという具合だろうか。そうだとすれば、もしも「38℃風呂の中でシュノーケリング全身潜水実験」を少し長い時間・キッチリやったなら、38℃の風呂は間違いなく(体より)冷たいと感じることになりそうだ。

 38℃の風呂に完全全身入浴時に、一体「人体周り熱収支」はどんな風になるだろう。?計算はしてみることにしても、中学生の彼ら(彼女ら)を見習って、銭湯にでも行ってシュノーケリングしてみることにしようか…。

2013-09-08[n年前へ]

福島第1原発「凍土遮水壁」の維持電気代は年間30億円…意外に安い?それとも高い!? 

 福島第1原発「凍土遮水壁」の維持電気代は年間30億円…意外に安い?それとも高い!?を書きました。

 「凍土遮水壁」の表面積1平方メートルあたり2.2Wの熱量が凍土遮水壁から出て行くことになる…といった計算を、約1400m×600mの区画を30mの深さまでの「壁」で囲うことを前提に行うと、全体で52万8千ワットが必要になるという計算になります。そして、東京電力の従量電灯B契約を見ると、1000Whあたり20円くらいです。そこで、1000Whあたり20円の代金で、52万8千ワットが1日24時間1年365日をまかなうために必要な電気代は、1年あたり(とても大雑把に)約30億円です。

 安倍総理のプレゼンテーション、"Fukushima let me assure you the situation is under control."という言葉を聞いた今日、福島第1原発「凍土遮水壁」の維持電気代は年間30億円…意外に安い?それとも高い!?を書きました。

■福島第1原発「凍土遮水壁」の維持電気代は年間30億円…意外に安い?それとも高い!? 








■Powered by yagm.net