hirax.net::Keywords::「ブランコ」のブログ



2000-11-26[n年前へ]

ブランコの中の∞(無限大) 

なんで一体漕げるのだろう?

 公園のブランコというのは、何故かとても不思議な雰囲気を持っている。ホントにうるさいくてたまらないくらいのガキんちょ達が、アクロバットのようなスゴイ技を見せていたりする。それは、まるで上海雑伎団を見ているような気分になる。小さな子がなかなかブランコが漕げず、ブランコの上で宇宙遊泳のように四苦八苦しているのを見ているのも思わず笑ってしまうくらいに可愛らしいものだ。

 もちろん、そこは子供の領分というだけではなくて、黒沢明の「生きる」の主人公がしていたように「大人がブランコに座って揺れていたり」すると、思わずその人の陰に隠れている物語を想像したりしてしまう。ブランコの周りというのはそんな不思議な雰囲気を持っているのだ。

 やたらにブランコを漕ぐのが上手いガキんちょもいる一方で、全然ブランコを漕げず四苦八苦する子供もいる。ブランコを漕ぐコツを覚えるのもなかなか大変そうである。考えてみれば、ブランコは一体どういう風に漕ぐものなのだろう?口で上手く説明できる人がいるだろうか?

 それに、そもそも私たちはブランコを何故漕ぐことができているのだろう?

 いったい、いつから疑問に思うことをやめてしまったのでしょうか? いつから、与えられたものに納得し、状況に納得し、色々なこと全てに納得してしまうようになってしまったのでしょうか?
 いつだって、どこでだって、謎はすぐ近くにあったのです。
 何もスフィンクスの深遠な謎などではなくても、例えばどうしてリンゴは落ちるのか、どうしてカラスは鳴くのか、そんなささやかで、だけど本当は大切な謎はいくらでも日常にあふれていて、そして誰かが答えてくれるのを待っていたのです....。
という手紙で始まるのは加納朋子の「ななつのこ」だが、「何故、リンゴは落ちるのかという謎」と同じく、「ブランコの漕ぎ方の謎」だってとても不思議だ。いつも目にする公園のブランコを、私たちは一体どうやって漕ぐことができているのだろう?
 

 もちろん、「何でブランコの漕ぎ方が不思議なのさ?」と言う人も多いだろう。その中には理路整然とブランコの漕ぎ方を説明してくれる人もいるだろう。そして、「特にブランコの漕ぎ方をじっくり考えたことなんかないもんね」という人も多いに違いない(私だけかもしれないが)。そこで、まずは「ブランコの不思議」を簡単に書いてみることにしよう。

 次の図は「ブランコを漕いでる子供」である。
 

ブランコを漕いでる子供

 この子供が何もせず立っているだけ(あるいは座っているだけ)だったら、どうなるだろうか?それはもちろん、単なる振り子と同じくようにブランコは動く。もしも色々な摩擦がなければ、まったく同じように動き続けるだけだし、摩擦力があればブランコの動きはただ減衰していくだけである。つまり、子供が何もしなければ、ブランコの動きは「遅く・小さく」なることはあっても、ブランコが「速く・大きく」なることはないのである。

 だからブランコを速くするためには、「ブランコに乗ってる子供がブランコを漕がなければならない」わけであるが、ブランコに乗ってる子供は一体どんなことができるだろうか?

 次に示す図は「ブランコに乗ってる子供を中心にとった座標軸」を描いてみたものだ。この図の中で直交する二つの軸を描いてある。つまり、

  1. ブランコの動きの中心を向いている軸A
  2. 軸Aに直交する、つまりブランコの進行方向(あるいはその逆方向)を向いている軸B
である。
 
ブランコに乗ってる子供を中心にとった座標軸

 ところが、実は「ブランコに乗ってる子供」はこの二つの軸の内の片方、軸Aに対しての動きしかできない。何故なら、軸B方向に対しては「ブランコに乗ってる子供」動きの支えになるモノが全然無い。だから、ツルツル滑る氷の上では全然動けないのと同じく、「ブランコに乗ってる子供」はその方向には動けないのである。もし子供がその方向に動こうとして体を動かしたりしても、結局子供の重心はその方向には全然動かないのだ。

 それに対して、ブランコの動きの中心を向いている軸A方向に対してはブランコの鎖も座っている(あるいは立っている)板が支えになるわけで、その方向に対しては「ブランコに乗ってる子供」は動くことができる。

 というわけで、ブランコの上では「ブランコの動きの中心を向いている軸A」方向にしか動けないわけであるが、その方向というのはブランコの進行方向に対しては直交している。つまり、ブランコを漕ぐためには、「ブランコの進行方向に対して直交している方向に動く」しかないことになる。

 ここまで書くと、ブランコの不思議が判るハズだ。ブランコを漕ぐ、つまりブランコを軸B方向の速度を上げたいのに、我々は「軸Bに対して直交している方向に動く」ことしかできないのである。一体何故、軸A方向に動いたハズなのに、それに直交する軸B方向の速度が増すのだろうか? この謎「ブランコの不思議」を、ゆっくり考えてみることにしよう。
 

 まずは、ブランコに乗ってる子供が立ち上がったりして、「ブランコの動きの中心を向いている軸A」方向に動いた場合、何が起きるだろうか?
 

ブランコに乗ってる子供が立ち上がったりすると、何が起きる?

 「ブランコの動きの中心を向いている軸A」方向に動くと、ブランコの鎖の長さが短くなることと同じである。すると、回転しているブランコの鎖が短くなるわけで、そうするとブランコの速度は速くなる。何故なら、角運動量が保存されるからである。ちょうど、スケートのフィギア競技の選手が回転中に伸ばしていた手を縮めると回転数が早くなるのと同じだ。

 もし、ブランコに乗ってる子供の重心がブランコの鎖の長さの半分だけ(とんでもない身長の子供だ!)上がれば、ブランコの速度はもとの速度の倍になるのである!

 ということは、少なくともこの瞬間は「軸A方向に動いたハズなのに、それに直交する軸B方向の速度が増す」わけであるが、これでブランコの漕ぎ方を納得するにはまだまだ早いのである。確かに、「ブランコの動きの中心を向いている軸A方向に動く」とブランコの速度は増すわけであるが、それはその瞬間だけである。ブランコの上で「立ち上がり続ける」なんてことはできないわけで、速度が増し続けるわけではないのである。

 もしも、「もう一度ブランコの上で立ち上がるために、すぐに低い姿勢に一旦戻ったり」したら大変だ。ブランコの鎖の長さが長くなるのだから、今度はブランコの速度は遅くなってしまうのである。

 もし、ブランコに乗ってる子供の重心がブランコの鎖の長さの二倍だけ(つまりさっき立ち上がった逆の動きである)下がれば、ブランコの速度はもとの速度の1/2になってしまうのだ!
これでは、結局さっきの速度が二倍になったことは帳消しになってしまう。つまり、「単純に」角運動量の保存を考えるだけではブランコの速度を(長い間にわたって)早くしていくことはできないわけだ。

 このままでは、「ブランコを漕ぐことなんか不可能である」という結論が出てしまいそうになるが、ブランコを漕いでる子供達はイッパイいるわけで、そんな結論を受け入れるわけにはいかない。彼らがみんな超能力でブランコを漕いでいるわけもないのである。まだまだ見落としていることがあるので、ブランコの不思議の謎が解けないだけのハズなのだ。
 

 そこで、ちょっと考えてみると「とんでもなく単純なこと」を見落としていたことに気付いた。それは、「タイミング」である。例えば、ブランコの速度がずっと同じであるすると、

  1. 初期のブランコの速度 = 10
  2. 重心位置を高くして 10 X 2 = 20 (やったぁ、速度が二倍だぁ!)
  3. 重心位置を低くして 10 X 1/2 = 10 (何てこったい、速度が半分になっちまったか!)
これじゃぁ、全然変わらないぞ!となるわけだが、もしもしブランコの速度が刻々違ったらどうなるだろうか?実際、ブランコの速度は刻々変わるわけだが、そんな場合はこんな感じにならないだろうか?
  1. 初期のブランコの速度 = 10
  2. 重心位置を高くして 0 X 2 = 20 (やったぁ、速度が二倍だぁ!)
  3. そのあとブランコの速度 = 0
  4. 重心位置を低くして 0 X 1/2 = 0 (0が0になっても全然変わってないもんね!ヘヘン!)
どうだろうか?「やったぁ、速度が二倍だぁ!」という喜びの瞬間はあっても、「何てこったい、速度が半分になっちまったか!」という悲しみの瞬間はないのである。「0が0になっても全然変わってないもんね!ヘヘン!」という「なくす物は何もない状態」はあるが、何も無くしていないのだから、それはノープロブレムなわけである。もちろん、ブランコの速度が0になった瞬間には「運動エネルギーを全て位置エネルギーに変換」しているわけで、速度は隠し財産としてちゃんと保存しているのである。そう、要はタイミングなのだ。

 人生何事もタイミングが重要である。失恋した男性や女性にタイミングをわきまえた「恋のハイエナ」達が寄ってくるのと同じく、またお金に困っていると何故かサラ金の広告が目の前にチラチラするのと同じく、ブランコを漕ぐにはやはりタイミングが重要なのだ
 

 なるほど、考えがまとまってきた。このイキオイでそのまま「ブランコの理想の漕ぎ方」まで考えてしまおう。

 まず、「重心位置を高くしてブランコの速度早くする」にはできるだけ速度が速い瞬間に行うのが良いだろう。倍率が確定している賭なのだから、元金はあればあるほどおトクである。1万円×2=二万円では1万円しかもうからないが、一千万円×2=二千万円では一千万ももうかるのだ。ブランコの速度が速い瞬間に立ち上がれば、一番おトクに速度を増すことができるのである。

 もちろん、ブランコの速度が速い瞬間といえば、明らかにブランコが一番下にきた瞬間である。つまり、ブランコが一番下にきた瞬間に立ち上がれば「一番おトクに速度を増すことができる」わけだ。しかも、その瞬間は鉛直に重心を持ち上げることになる。つまり、位置エネルギーを効果的に増加させることができるわけだ。結局、この時に増加させた位置エネルギーは後で、運動エネルギーに変換されるわけで、結局これがブランコの運動の源となるのである。

 そして、「次にもう一度立ち上がるために一旦低い姿勢に戻る瞬間」=「速度が遅くなる瞬間」はブランコが停止しているときであれば何の問題もない。ブランコはもともと止まっているんだから、その速度が何分の一になったって全然気にしないもんね!となるわけだ。そのタイミング= ブランコが止まる瞬間といえば、もちろんブランコが最高地点まで上がった瞬間である。つまり、ブランコが一番上にいった瞬間に低い姿勢に戻れば全く減速無しに次の加速に備えることができるわけである。しかも、その時には実は運動エネルギーを位置エネルギーに変えることで、隠し財産にしているわけで、もう汚い政治家のマネーロンダリングのような見事な方法なわけだ。

 というわけで、

  • ブランコが下に来たときに(立ってる場合は)足を伸ばして立ち上がったり、(座ってる場合は)足を曲げたりすることにより高い位置に重心を持ってきて(しかも、重力に逆らって重心を上げるため位置エネルギーが増加する)
  • ブランコが上に行ったときにその姿勢を元に戻す
ことにより、ブランコは効果的に漕げる、ということが判るわけだ。これが、理想の漕ぎ方だろうし、これの逆の漕ぎ方をすればきっとそれは最悪の漕ぎ方のハズなのである。

 それでは、確認のためにそのやり方で本当にブランコが漕げるのかどうか、シミュレーション計算を行ってみた。ブランコの動きは振り子運動だが、振れ幅がとても大きいので、cosx≒xというような近似をする単振動としての扱いはできない。そこで、楕円積分の計算を行わなければならない。が、私が自分の力でできるかどうかはともかく、そこはMathematicaに解かせればイッパツである。もう、驚くくらい簡単なのである。自分の力で解いていないところが、実に悲しい現実ではあるが、それが現実なのだからしょうがない。

 というわけで、ブランコの動きのシミュレーションをしてみた結果が次のグラフである。「ブランコに乗ってる子供」の漕ぎ方としては、以下の三つ

  1. 何もしない場合
  2. ブランコが下にきたあたりで立ち上がり、ブランコが上にきたあたりで座り込んだ場合
  3. ブランコが下にきたあたりで座り込み、ブランコが上にきたあたりで立ち上がった場合
を考えてみた。もちろん、瞬間的に子供が立ち上がったり、座り込んだりすることはできないだろうから、その子供の動きは三角関数で近似してみた(いや、これのせいで計算はかなり大変だったが、これのおかげで実際の動きにかなり似たものになったと思う。)。さて、この三つの場合のブランコの動きのシミュレーション結果はどうなっただろうか?
 
ブランコの動きのシミュレーション結果
1. 何もしない場合

→ ブランコの動きはず〜と変わらない
2. ブランコが下にきたあたりで立ち上がり、
ブランコが上にきたあたりで座り込んだ場合

→ ブランコの動きはどんどん大きくなる
「やったぜ、これが理想の漕ぎ方だぁ。」
3. ブランコが下にきたあたりで座り込み、
ブランコが上にきたあたりで立ち上がった場合

→ ブランコの動きはどんどん小さくなる
「なんてこったい、遅くなっちまったぁ。」

 この結果から、ちゃんと1.の「何もしない場合」は「ブランコの動きはず〜と変わらない」し、理想の漕ぎ方であるハズの2.の「ブランコが下にきたあたりで立ち上がり、ブランコが上にきたあたりで座り込んだ場合」は「ブランコの動きはどんどん大きくなる」し、最悪の漕ぎ方であるハズの3.の「ブランコが下にきたあたりで座り込み、ブランコが上にきたあたりで立ち上がった場合」には「ブランコの動きは逆にどんどん小さくなってしまう」ことがわかる。というわけで、今回考えた「ブランコの不思議= 漕ぎ方」はシミュレーション計算結果からも確かめることができたわけだ。

 ところで、こういったタイミングを考えながらパラメーターを変えることで動きを大きくしたりすることは「パラメータ励振」と呼ばれる。ブランコの漕ぎ方はその「パラメータ励振」の応用のひとつである。「何故、リンゴは落ちるのかという謎」には重力という基本的な物理現象が隠されていたが、それと同じく、「ブランコの漕ぎ方の謎」にも「パラメータ励振」という物理現象が隠されているのだ。次回以降も、この「パラメータ励振」を手がかりにいくつかの「身近な謎」に迫ってみたい、と思うのである。
 

 さて、公園でブランコを漕ぎまくる子供をもし見かけたならば、ぜひ横から子供の動きを見てやってもらいたい。きっと、その揺れ動くブランコの中にはこんな∞(無限大)の形が見えるハズだ。天まで上ろうとする「ブランコの秘密」はその「ブランコの中の∞(無限大)」に隠されていたのである。子供も含めて人間の可能性は∞(無限大)だと私は思うが、ブランコの揺れる動きから、そんなことを考えてみるのも少し面白いのではないだろうか? それとも、ちょっと考え過ぎかな。
 

2000-12-01[n年前へ]

続々オッパイ星人の力学 

胸を揺さぶるパラメータ励振 編

 前回、

では、純真でピュア〜な幼心に戻って公園で大きく揺れるブランコの動きを考えてみた。近所の公園でよく見かける、小学生位の子供達が一心不乱にブランコを揺らす景色の中に隠れている科学をちょっとばかり考えてみたわけだ。そして、「ブランコの漕ぎ方の謎」の中には「パラメータ励振」という物理現象が隠されていることを眺めてみた。動きの周期のタイミングに合わせて、パラメーターを変えてやることでブランコの振動を大きくしていたのだった。

 ところで、公園でブランコを揺らす子供達と同じく、純真でピュア〜なのが生まれたばかりの乳児達である。もちろん、そんな乳児達はまだまだ公園でブランコを揺らすなんてことはできなくて、大きく成長するために母親の母乳を飲んで、そしてただひたすら眠る毎日を過ごしているのである。

 そんな乳児の頃の純真でピュア〜な気持ちを、大人になっても持ち続けている人達もいる。そんな純真でピュア〜な大人達は大人になっているにも関わらず、生まれたばかりの乳児と同じくオッパイに惹かれ続けているのである。そして人は彼らをほんの少しばかりの尊敬と沢山の侮蔑を込めて「オッパイ星人」と呼ぶのである。
 

 これまで「できるかな?」では、そんなオッパイ星人達の科学である

を考察してきた(いやもちろん目的はオッパイ星人と闘うためであって、女性を守るためであることはもう一度ここで確認しておきたい)。
 今回は「純真でピュア〜」をキーワードにして「子供達がブランコを揺らす景色の中に隠れている科学」と同じように、「オッパイ星人の力学」について考えてみたい、と思うのである。

 
 まずは、次に示す「純真でピュア〜」な二つの運動を見てもらいたい。一つは、「純真でピュア〜」な
子供達が公園のブランコを揺らしている時の動きであり、もう一つは「純真でピュア〜」な「オッパイ星人」達が眺めているGカップバストを揺らす女性の胸板の動きである。
 

「純真でピュア〜」な二つの運動
「純真でピュア〜」な
子供達が公園のブランコを揺らしている時の動き
 
 
 




 

「純真でピュア〜」な
「オッパイ星人」達が眺めている
Gカップバストを揺らす女性の胸板の動き

 この二つの図をじっと眺めてみると、何か共通点が見えてはこないだろうか?少なくとも、私(純という名前を持つ位だから純真さでは保証付きである)と同じく「純真でピュア〜」な目で眺めてみれば、共通点が見えてくるハズなのである。

 「何か、単に両方グニョグニョした動きにしか見えないぞ。」という人、つまり「純真でピュア〜」な目を持たない人もきっと多いことだろう。哀しいことに、この世知辛い世の中ではそんな「純真でピュア〜」な目を持ち続けるのはムズかしいことなのである。そこで、そんな不純な人でも判りやすいように、さらに

  • 子供がブランコを動かすときの「子供の上下方向および水平方向の動き」
  • 女性が歩くときの「女性の胸板の上下・左右方向ぞれぞれの動き」
を並べて見てみることにしよう。ちなみに、この図は大雑把に書いてみたもので、全然正確なものではない。
 
ブランコを動かすときの「子供の上下方向および水平方向の動き」を簡易的にしたもの
ブランコを漕ぐ子供の
重心の上下方向への運動
ブランコの水平方向の運動

 そして、こちらが女性が歩くときの「女性の胸板の上下・左右方向ぞれぞれの動き」である。
 

女性が歩くときの「胸板の上下・左右方向ぞれぞれの動き」
女性が歩くときの
胸板の上下方向への運動
女性が歩くときの
胸板の左右方向への運動

 こうしてみると、ブランコを揺らす子供の動きと、Gカップバストを揺らす女性の動きが、よく似ていることがわかるだろう。上下方向への運動は全く同じであるし、左右方向への動きはタイミングが違うだけ、つまり位相が違うだけなのである。その位相の違いを実感するためには、

  • 時間
  • 左右の動き = X
  • 上下の動き = Y
という三次元でそれぞれの動きを見てみるのが一番判りやすい。というわけで、それを図示すると次のようになる。
 
それぞれの動きの「時間・左右動・上下動」
ブランコを揺らす子供の動きの場合
Gカップバストを揺らす女性の動き

 方向性が逆であるだけで、全く同じであることがよく判ると思う。方向性の違いを除けば、ブランコを揺らす子供の動きとGカップバストを揺らす女性の動きは全く同じなのであって、私はこれら二つの運動の根本原理は全く同じものなのではないか、と思うのだ。もちろん、その原理を「純真でピュア〜な心」である、と言ってしまえばそれで終わってしまうわけなのだが、それでは「科学(?)」ではない。「純真でピュア〜な心」がブランコを動かし、世界を動かし、ついにはGカップバストを動かしているのだぁ、と言えば哲学的(?)ではあるが、科学(?)ではない。いや、そんなのは科学的でも哲学的でもなくて、単なるエロ・エロ・トークだと言う人もいるかもしれないが、そういうことを言うヤカラは「純真でピュア〜」な目を持たない人に違いないのである。少なくとも、「なんて素晴らしいファンタジ〜なんだぁ」という位には言って欲しいのである。
 

 ただ、「ブランコを揺らす子供の動きとGカップバストを揺らす女性の動きは方向性が逆がである」ということは実は面白い考察ができるのである。前回、ブランコの動きを考えた時に、ブランコの効果的な漕ぎ方と方向性が逆の「ブランコが下にきたあたりで座り込み、ブランコが上にきたあたりで立ち上がった場合 」のシミュレーション計算をしてみた。その結果は、ブランコの振動がどんどん小さくなってしまったのであった。つまり、除振効果が働いてしまうのである。

 ということは、である。Gカップバスト(いやAAAカップでも同じであるが)を揺らす女性の動きは、実は揺らしているのではなくて、Gカップバストを揺らさないために最も効果的なのではないだろうか?Gカップバストが揺れ動いてしまってはオッパイ星人はともかく、本人はとても困るわけでそのために実は彼女らは「パラメータ(パラメトリック)励振」という物理現象・科学を応用しているのではないか、と想像してみるのもオツなものではないか、と私は思うのである。

 もちろん、ブランコの動きが実は結構複雑であるの以上にGカップバストの動きは複雑である。弾性・塑性・そして様々なブラジャ〜による拘束条件も解明しなければならないだろう。それは実にメンド〜な試みではあるが、きっといつか「純真でピュア〜な心」を持つ学生諸君がその謎を解明するに違いない。「天使のブラによる拘束条件とGカップバストのパラメトリック励振」なんていうタイトルの論文を近日中に目にすることができるに違いない、と私は夢見ているのであった。
 

2000-12-02[n年前へ]

ブランコの中の∞(無限大) その4 

  mail 実は私は,まじめにブランコの制御を研究していまして,実際にブランコロボットを製作し実験しました.その様子は(リンク)にありますので,ご覧ください. ブランコがなぜこげるかは,数式を使うと簡単に説明できるのですが,直観的に説明しようとするとなかなか難しいものです.物理の教科書にも,これまでなかなかいい説明が載っていなかったので,僕も学生には角運動量の話を使って説明していました.今回,同じ論法で説明されている方を見つけて大変感激しております.次回のパラメータ励振の話も楽しみにしています. < Thank you.   jun hirabayashi 「次回のパラメータ励振の話」を読んで失望されていないことを、ただただ願うのみです。ハイ。

ブランコの中の∞(無限大) その1 

  mail 子供がブランコをこぐということを「仕事をする」と考えます.仕事とは力に逆らって物体を移動させたりすることです.子供がブランコに乗っているとき、最下点に来た瞬間に速度は最大です.当然そのとき遠心力も最大になります.このタイミングでしゃがんでいる子供が立ち上がるということは遠心力に逆らって自分の体を移動させたと考えることができ、それは仕事をしたと考えられます. < Thank you.  jun hirabayashi なるほど、判りやすい説明ですね。ただ、ちょっと気をつけなければならないのが、「 遠心力に逆らって自分の体を移動させた」という部分でしょうか。例えば、ブランコが45度の角度まで、つまり結構高く上昇した後に最下点を通過する時の遠心力を計算してみると、たかだか重力の六割弱に過ぎません。つまり、力あるいは仕事の割合から言えば、「重力に逆らって」という方が近いわけです。なので、結果的には単純に位置エネルギーを運動エネルギーに変換している、ということになるのでしょう。

ブランコの中の∞(無限大) その3 

  mail もしブランコの座り台を吊る鎖が一本のパイプで出来ており可動部がないとするとうまく漕げないような気がします。 < Thank you.  jun hirabayashi という疑問には、同じく読者の方から頂いた次のメールが参考になるか、と。



■Powered by yagm.net