1999-01-10[n年前へ]
■宇宙人はどこにいる?
画像復元を勉強してみたい その1
知人から「自称UFO写真」というのものが冗談半分(いや100%位か)で送られてきた。その写真はボケボケの画像なので何がなんだかなんだかわからない。そこで、ぼけぼけ画像を復元する方法を勉強してみたい。UFOは冗談として、画像復元において進んでいるのは天文分野である。そこで、このようなタイトルなのである。もちろん、画像復元の問題は奥が深すぎるので、じっくりと時間をかけてみる。今回はMathematicaを使って試行錯誤を行った。
ボケ画像を復元するには、ボケ画像がどのように出来ているかを考えなければならない。そこで、ごく単純なぼけ画像を考えてみる。まずは以下の画像のような場合である。
画像:1のような点画像が、画像:2のような分布のボケ画像になるとすると、次のような関係が成り立つ。
(式:1) 画像:4 = 画像:3 * 画像:2
画像:1のような点画像が画像:2になるなら、それを参照すれば、画像:3のような点画像の集合がどう
ボケるかは計算できる。つまり、それが画像:4になる。ここで、*はコンボリューションを表している。
よくある信号処理の話で言えば、画像:2はインパルス応答である。といっても、これはごくごく単純な場合(線形シフトインバリアントとかいろいろ条件がある)の話である。まずはそういう簡単な場合から始めてみる。
このようなごく単純な場合には
(式:2) 画像:3 = 画像:4 * (1/画像:2)
とすれば、画像:3を復元できることになる。
そこで、まずは単純な1次元データで考える。下の画像:5のようにボケる場合を考える。ここでは、ガウス分布にボケるようにしてある。
であったが、* すなわち、コンボリューションは
逆フーリエ変換(フーリエ変換(オリジナル画像) x フーリエ変換(ボケ具合))
と表すことができる。つまり、周波数領域で掛け算をすれば良いわけである。
それでは、試しに適当な1次元データをつくって、画像:6とコンボリューションをとってやり、ボケさせてみる。
逆フーリエ変換(フーリエ変換(画像:9) / フーリエ変換(画像:7))
= InverseFourier[Fourier[Image8] / Fourier[Image6]]; (*Mathematica*)
とやると、次のデータが得られる。
(式:2) 画像:3 = 画像:4 * (1/画像:2)
を見るとわかるが、画像:2が周波数領域で0になる点があったりすると、計算することができない。また、0に近いとむやみな高周波数の増幅が行われて使えない。
そこで、この方法の修正として、ウィーナフィルターなどの最小平均自乗誤差フィルターがある。これにも多くの不自然な条件のもとに計算される(らしい)。しかし、infoseek辺りで探した限りでは、ウィーナフィルターを用いた画像復元の標準であるらしい。
この方法は先の逆変換に対して、次のように変形されたものである。Mathematicaの表記をそのまま貼り付けたのでわかりにくいかもしれない。
Noise ノイズのパワースペクトル
Signal 信号のパワースペクトル
Boke ボケる様子のインパルス応答
Conjugate 複素共役
BokeData ボケ画像
ResData1 計算した復元画像
Boke1 = (Boke^2 + Noise/Signal)/Conjugate[Boke]; (*Mathematica*)
ResData1 = InverseFourier[Fourier[BokeData] / Fourier[Boke1]]; (*Mathematica*)
である。Noise/SignalはS/N比の逆数であるから、SN比の大きいところではインバースフィルターに近づく。また、インバースフィルターの計算不能な点が消えている。
これを使って復元してみたのが、次のデータである。
まずは、ボケのフィルター(PSF=PointSpreadFunction(どのようにボケるかを示すもの)、2次元のインパルス応答)である。
その他線形の画像復元法をいくつか調べたが、ウィーナフィルターやインバースフィルターとほとんど同じような物が(素人目には)多かった。そこで、ウィーナフィルタなどとはやり方がかなり異なるものについて、いずれ挑戦してみたい。
関係はないが、ウィナーと言えばサイバネティクスが思い浮かんでしまう。当然、ロゲルギストが連想されるわけだが、文庫本か何かで岩波版と中公版の「物理の散歩道」が安く売り出されないのだろうか?売れると思うんだけど。新書版は高すぎる。
宇宙人はどこにいるか? そういった話は専門家に聞いて欲しい。わからないとは思うが。
さて、ここからは、1999.01.24に書いている。シンクロニシティとでも言うのか、今回の一週間後の1999.01.17に
日本テレビ系『特命リサーチ200X』で
地球外生命体は存在するのか?( http://www.ntv.co.jp/FERC/research/19990117/f0220.html )
という回があった。何とこの回のコメンテーターは先の専門家と同じなのだ。偶然とは面白いものだ。
1999-09-23[n年前へ]
■MiosoftはApple株でいくら儲けているか?
価値観は線形なままで
ユング心理学では因果関係が無い偶然の一致を「シンクロニシティ(共時性)」と呼ぶ。いろいろ意見の違いもあるだろうが、私は「シンクロニシティ(共時性)」は結局偶然のせいではなく、世の中の流れの要請による必然なのではないかと思うのである。
と、いきなり訳のわからない話だが、今回の話は「今日の必ずトクする一言」の
ともあれ、webmaster氏のメールのおかげで、株価の値軸が妙に頭に残る最中に、私は「MicrosoftはApple株でいくら儲けているか?」という疑問が沸いて、Appleの株価を見に行ったのである。何しろ、MicrosoftはAppleの大株主である。
一見似ているように思える。しかし、よく見てみると軸が違っている。左のAppleComputerの株価変動は対数軸で表されている。「株価表示グラフで値の軸を対数軸にできないか」という言葉が頭にあったせいで気づいたわけだ。そこで、この違いが新鮮で「今日の必ずトクする一言」のwebmaster氏への返信に至ったわけである。
それでは、左のAppleComputerの株価変動をリニアな軸に変換してみよう。
印象が全く違う。右の線形軸のグラフは値軸の間隔が等間隔になっているのがわかると思う。それに対して対数軸で表されている右側は上に行くほど間隔が短い。右の線形軸では株価が急激に上昇しているのが実感できる(私は)。株取引的な考察は「対数軸証券グラフのナゾ」の方にあるので、ここでは本題の「MicrosoftはApple株でいくら儲けているか?」に戻る。
さて、このグラフのようにApple株は急上昇中なわけで、問題の「MicrosoftはApple株でいくら儲けているか?」であるが、97/08/08当時の13ドル前後の株価で一億五千万ドル分のApple株を買っていたとしたら、現在は80ドルくらいであるから、およそ6倍。すなわち、一億五千万ドルから九億ドルになっていることになる。うーん、たまらん。800億円近い差が有る(線形的な発想)。
さて、最初の疑問はこれで解決したのだが、わが「できるかな?」でも株価の軸の
- 対数軸
- 線形軸
日頃、実験を行っている時などは
「たかだか一桁の変化だろう。」などと対数軸の感覚に支配されているのであるが、こと経済になると線形軸の感覚に支配されるのである。これは私が貧乏であるからかもしれない。1万円はどんなときも1万円なのである。10万円と11万円の違いも、100万円と101万円の違いも同じなのだ。これが一億円と一億一万円でも同じである。何しろ、そんなお金と無縁なのである。であるから、貧乏な金銭感覚をそのまま線形で延長してしまうのである。「金銭に関する差の感覚」といってもよい。
これは人によっても違うだろう。私と違うブルジョアジーな人であれば、例えば、車を買うときに
「300万円の車を買うから、30万円のカーナビを一緒に買っても誤差みたいなものだ。」という人もいると思う。また、「一億円と一億一万円は同じだ」と言うだろう。これなどは経済に関する対数軸の感覚の一種だと思う。この人は「金銭に関する比の感覚」を持つ人である
さて、こういうことを考えていくと、金持ちの1万円と私の1万円は価値が違うことにいまさらながら気づくのである。私は1万円もらったら大喜びだ。しかし、同じだけビル・ゲイツを喜ばせようと思ったら、九億ドル位は必要だろう。そういうことを考えると、経済社会は実に対数軸である。いや、むしろ世の中が対数軸だと言ったほうが良いだろうか?
今回の話とやはり似て非なる話がロゲリギストの「第四物理の散歩道」の「理解の形式」に述べられているので、興味の有る方は読むと面白いと思う。
さてさて、同じ題材をとってみても経済オンチの私が作る「できるかな?」は「「対数軸株価グラフのナゾ」」とは違い、ずいぶんと変な話になってしまったようである。しかし、それが個性というもの。みんなが同じではつまらない。
ともあれ、価値観に対する評価軸は線形軸の方が良い、と思う私であった。
2001-03-16[n年前へ]
■今日のBGM
C/G/Am/Fの単なる繰り返しだけど、シンクロニシティコンサート版の方のこの曲は大好きだ。そういえば、Policeみたいな強力三人構成バンドは憧れだったなぁ。(リンク)(リンク)(リンク)
2003-01-23[n年前へ]
■両手は聴衆の視線の地平線
ご存じの方はご存じのアレとは少し違うかもしれないが、今日もいつものようにグリグリ〜としたプレゼンをしてみた。朝通勤途中の車の中でポリスのシンクロニシティコンサートのLIVE CDをガンガンにかけていたので気分はスティングで、相手が誰でもとりあえず関係ないのである。いつものように、頭の中で「ステージの上では私は女優(あっ、男優か)よ」と誰かが囁くのである。というより、性格的にそうでも思わないと大勢の人に喋るなんてやってられないのである。
で、まるでシンクロニシティのようにhardでloxseな日々経由で作品をよく見せるためのお手軽なテクニック集なんかを眺めてみた。これは、なかなか面白い。「個性的な人の顔写真を使うと安易に笑いが取れる」なんていう、一件クダラナそうに見えることこそ、特に参考になるような気がするのである。
そうえいば、これまでに受けたプレゼンの研修の中で一番心に残っているのがこんな言葉だ。「オマエの両手は聴衆の視線の地平線だ」「つまり、聴衆はオマエの両手より下は決して見ないものだ」「ということは、両手を肩の高さ辺りでキープしておけば、聴衆はオマエの顔から目をそらせなくなるし、聴衆の視線の位置だって自由自在にコントロールできる」「だから、腕は胸の高さより下げるな」「聴衆の視線をコントロールするる努力を惜しんではいけない、絶対に」
というわけで、私はこれ以降プレゼンの姿勢はスキーと同じだと思うことにしたのである。スキーで滑っているときに、腕が下がっているスキーヤーはスキーが下手なのと同じように、プレゼンテーションをしている時に腕を下げている発表者はプレゼンが下手なのだ。この「両手は聴衆の視線の地平線」という言葉には本当に目から鱗が落ちたのだった。