hirax.net::Keywords::「偏光」のブログ



1999-01-30[n年前へ]

渡り鳥の秘密 

3000kmの彼方へ

 先日、福島のいわき市の近くに友人を訪ねた。その近くで、はるか海を渡ってきた白鳥の群れを見た。そこでどこから来るのかとか、どうやって来るのかなどの話をした。大体、以下のような疑問である。

  • Q.1:海を渡るのにどの位の時間がかかるのか?
  • Q.2:位置(あるいは方向)はどのように認識するのか?
  • Q.3:どこから来るのか?
  • Q.4:なぜ渡るのか?
 Q.4の「なぜ渡るのか?」については不問にしておく。「進化の過程で渡った方が有利(安全性、食料獲得面)だったから」というような答えもあるだろうが、実証は困難だろう。確かめようがないのなら、しょうがない。

Q.3のどこから来るのかについては、仙台市科学館の中のGooseSchool(http://www.smus.city.sendai.jp/goose/home.html)に簡単な説明があった。そこにガンの「渡り」の地図が示してあった。その図を引用させて頂く。いや、もちろん「白鳥でなくガンであるし、そもそも飛んでくる場所が違う」のはわかっている。しかし、先の疑問の「どこから来るのか」はべつにいわき周辺の白鳥にこだわった疑問ではないのだから、他の場所の他の動物でもいいのだ。

(画像リンク先は仙台市科学館 http://www.smus.city.sendai.jp/)
右のガンの到着地(あるいは出発地)は伊豆沼(仙台と一関の中心辺りに位置する)という場所である。ちなみにいわき市は伊豆沼の下の地図の下端あたりである。
さて、残る疑問は、
  • Q.1: 海を渡るのにどの位の時間がかかるのか?
  • Q.2: 位置(あるいは方向)はどのように認識するのか?
である。
このGooseSchool(http://www.smus.city.sendai.jp/goose/home.html)には「渡り」をどのように行うかという簡単な説明がある。それによれば、
  • A.1: 人工衛星用位置送信機を取り付け経路を追跡した結果では2日間で2000kmをノンストップで渡り続ける。
  • A.2: 時間は体内時計で知り,方向は星や太陽で分かる。鳥はコンパスや六分儀のような能力を両方持っている。
と記述されている。2000kmというのがどこからどこまでとは記述されていないが、右の地図のそれぞれの起点であるシベリアのチュコト地方と伊豆沼は200kmより遥かに離れていることから、北海道からカムチャッカ半島の間を指しているのだろう。おそらく、北海道とカムチャッカ半島の間の海上ではノンストップで渡るということだろう。ガンと白鳥の間にそれほどスピードの違いはないだろうから、Q1:海を渡るのにどの位の時間がかかるのか? に関しては疑問は解けた。しかし、Q2:に関しては簡単な答えすぎて、まだまだ知りたくなる。私は測地学講座という名前の研究室に在籍していたので、当然の疑問だ。

 そこで、簡単に手に入った

  1. 「鳥の渡りの謎」 (ロビン・ベーカー著 網野ゆき子訳 平凡社発行 ISBN4-582-52717-5)
  2. 「鳥学の世界へようこそ」 (ディヴィッド・ラック著 蓮尾純子 訳 平河出版社ISBN4-89203-192-5)
という本で調べてみる。「鳥の渡りの謎」は Robin, Baker, Bird Navigation: the solution of a mystery? (1984) を訳したものであり、「鳥学の世界へようこそ」はDavidLack, Enjoying Ornithology (1965)を訳したものである。原著の発行時期の違いなどから、「鳥学の世界へようこそ」はかなり資料としては古い。それでも、とても面白い。高校、大学の教養課程、あるいは専門課程の入門書としてはとても良さそうだ。

 「鳥の渡りの謎」の原著の表現では「渡り」を"navigation"と表現し、「鳥学の世界へようこそ」の原著の表現では"migration"と表現しているのも視点の違いとして面白い。

 さて、この2冊の本はいろいろな実験を行った論文を引いて、「渡り」に関しての実証を行っている。動物が絡んだ実験は、実験の精度を高めることがなかなか困難に思えるが、そこはしょうがないだろう。というわけで、必ずしも実験が信用できるわけでもない。特に磁気に関する実験に関して精度の低さを感じる。

 しかし、今回は自分で実験も解析もしていないので、簡単なまとめだけにしておく。

  • 鳥(種類、地域、条件)により「渡り」の際に使用する航法(navigation)は異なる。
  • 方位を頼りにするやり方も、位置を頼りにするやり方もある。使用されるのはどちらか片方のみというわけでもない。
  • 位置のセンサーとしては、目印、音、におい、磁場*、重力*
  • 方位のセンサーとしては、太陽の位置、光の偏光パターン、星、月などの位置、地磁気*
*ここらへんは個人的には疑問に思う。

 さて、今回は下調べばかりであった。これでは、いけない。いけない。自分で実験もしなければ意味が無い。というわけで、近日中にある実験をする予定である。

1999-02-26[n年前へ]

ヒトは電磁波の振動方向を見ることができるか? 

はい。ハイディンガーのブラシをご覧下さい

- はい。ハイディンガーのブラシをご覧下さい -
(1999.02.26)

リチャード・ファインマンの本の中で次のような問題があったように思う。
「偏光板がフィルターが一枚だけある。その偏光フィルターの偏光方向をどのようにして知れば良いか?」
その本の中での答えは、
「物体の反射光を偏光フィルターを通して見てみる。」
だった。ブルースター角で入射した光の反射光は、入射面に対して電場の振動方向が垂直になっている、ということを利用するわけである。

分かりやすいように、偏光フィルターを通してみたガラスの反射光をデジカメで撮影してみる。左が反射光を通すような角度に偏光フィルターを回したものであり、右が反射光をカットするような角度に偏光フィルターを回した場合である。この左の場合、すなわち、反射光が一番通過している角度から液晶の偏光面がわかるわけである。

ガラスに映った夕景を写したもの。偏光フィルタの角度を振った。


ところで、このようなファインマンが示したような方法を用いなくても、そもそもヒトは電磁波の振動方向を見ることができるのである。以前、「渡り鳥の秘密- 3000kmの彼方へ - (1999.01.30) 」の中で「鳥は太陽の位置、光の偏光パターンを位置のセンサーに使う」という話があった。ヒトも同じく光の偏光方向、すなわち、電磁波の振動方向を見ることができるのである。鳥はどう見えるかは私にはわからないが、ヒトならば自らが実験台になれるので、電磁波振動方向をどう見ることができるか調べてみたい。というわけで、「渡り鳥の秘密- 3000kmの彼方へ - (1999.01.30) 」の中で「近日中にある実験をする予定である」と書いたものが今回の確認実験である。なお、光の進行方向と磁界の振動方向を含む面を「偏光面」、電界の振動面を含む面を「振動面」と呼ぶ。

電磁波の振動方向をヒトが見ると「ハイディンガーのブラシ "Haidinger'sBrushes"」というものが見える。それを知ったのは、いつものごとく「物理の散歩道」からである。網膜に複屈折性があるために「ハイディンガーのブラシ」が見えるのだという。

私はこれまで、「ハイディンガーのブラシ "Haidinger's Brushes"」を見たことがない。いや、正確に言えば意識したことがない。そこで、判別しやすいように直線偏光を用意してやることにした。そこで、東急ハンズで偏光フィルターを買ってきた。

そして、空を見てみる。もちろん、偏光の偏りが強い、太陽を中心にして90度の角度をなす同心円方向である。詳しくは、

などを参考にして欲しい。これも、結局は「ブルースター角で入射した光の反射光は、入射面に対して電場の振動方向が垂直になっている」せいである。これらからわかるように偏光を認識できると太陽を中心とした同心円が空にはっきり映し出されて見えるのである。渡り鳥はおそらくそれも認識できるのだろう(鳥の種類により、遠い所を見る際には偏光を認識できるが、近い距離では認識できないなどあるらしい)。

さて、ヒトである私は、空を眺めて格闘すること5分程で、「ハイディンガーのブラシ"Haidinger's Brushes"」がわかるようになった。私が見たハイディンガーのブラシ"Haidinger's Brushes"を示す。

私が見たハイディンガーのブラシ "Haidinger's Brushes"

この絵で太陽の方向は右上であり、偏光面は次の絵の青の矢印方向になる。

ハイディンガーのブラシと光の偏光面の対応

というわけで、ヒト(少なくとも私は)電磁波の振動方向を見ることができるのである。慣れてしまうと、白い紙を見つめているときなども(条件によっては)見えるようになる。色を扱う人は意識すると面白いと思う。

ところで、偏光フィルターがどういうものか知らない人のために、NotePCの液晶に偏光フィルターを重ねた写真を示す。

偏光フィルタを液晶に重ねたところ。右と左は偏光フィルターの角度の違い。

なぜ、こうなるかわからない方は、

などを参考にして欲しい。液晶ディスプレイの構造がわかると思う。

そして、面白いことに気づいた。NotePCの液晶からの光は直線偏光である。ということは、NotePCの液晶にはハイディンガーのブラシが映っているのである。正確に言えば、NotePCの液晶を見ているあなたの視界の中央には、ハイディンガーのブラシが映っているのである。と、気づいてみると確かに見えている。

というわけで、液晶ディスプレイを使用している方はハイディンガーのブラシを見て頂きたい。以下のやり方がわかりやすいと思う。

1.このWindowを最大化する
2.下へスクロールして画面を真っ白にする。
3.液晶ディスプレイ(NotePC)を回転させる。
4.画面(視点)の中央に(視点に対して位置が)動かない黄色いもやが見えるはず。もちろん、回転はする。
 液晶ディスプレイやヘッドマウントディスプレイ(HMD)を色々見てみたが、どれにもハイディンガーのブラシは存在していた。視界の中央に不思議な十字架のように現れているのである。現代の液晶技術が負う十字架である。
誰もが、目の前にあるのにそれに気づかないというのも、実に面白い。まるで、「青い鳥」のようである。そして、そういうことはとても多いのではないかと思う。それはそれで面白い話だ。

- それでは、ハイディンガーのブラシをご覧下さい -






































2000-05-12[n年前へ]

メガネの内側にある歪み 

隠れたストレスに光を当てろ

 また、可視化の話である。いや、自分でも忘れていたが、「可視化」改め「見える?見えない?」シリーズである。今回はメガネの内側にある「歪み」、隠れたストレスに光を当ててみたい。そして、そこに何があるかを見てみたいのである。

 私の眼はどうも明るさに弱い。やたら太陽の光が眩しく感じることが多い。といっても、単に私のガマンが足りないだけかもしれない。あるいは、睡眠不足のせいかもしれない。そして、私は同時に暗さにも弱いのだが、こちらは単にビタミン不足による鳥目だろう。

 そういうわけで、明るいのに弱いので車を運転する時には大抵サングラスをかけている。サングラスは何本も持っているわけだが、最近のお気に入りはこれである。
 

偏光サングラス \1280也

 これは、偏光フィルター機能付のサングラスである。偏光というギミック付のところがお気に入りの理由である。以前、

で書いたように、偏光フィルターがあれば色々なものの反射光のみを遮ったりすることができる。例えば、下の右側の写真では左の写真に比べてガラス表面の反射光が減少していることがわかるだろう。これは偏光フィルターの作用のせいである。
 
右側の写真では左の写真に比べてガラス表面の反射光が減少している

 これと同じように、偏光フィルター機能付のサングラスを使えば色々な反射光を防ぐことができる。例えば、通常は反射光などで車のフロントグラスの内側にいる人の姿はよく見ることができない。しかし、このメガネをかけていれば、反射光に邪魔されずフロントグラスの内側を見通すことができるのである。もう、対向車なんてまるでフロントグラスがないかのようである。

 この偏光フィルター機能付のサングラスは、通常「釣り」などで用いられるものだ。水面の反射光を防ぐことにより、水中の魚の姿などを見やすくするためのものである。結構、海の近くに住んでいる私にはうれしい機能である。

 このサングラスをかけている時に、ふとある実験を思いついた。普段は透明にしか見えない「普通のメガネ」の影に隠れたストレスを目に見える形にしてみようと思ったのである。よく、「メガネの奥にストレスが隠れている」というが、そのストレスを見て取れる形にしようと思うわけだ。

 そこで、新婚ホヤホヤの「夜の帝王」I田氏(関係ないが、I田氏から「Hirabayashiさん、小杉のメーリングリストで-できるかな?-の話題が出てましたよ。」と言われた時はビックリした。とりあえず、どなたか知らないが、メーリングリストで紹介して頂いた武蔵小杉勤務の方には一言お礼を言っておきたい)にメガネを借りてみた。このメガネをじっくり眺めてみてもらいたい。
 

普通のメガネ

 この透明なメガネの奥に何か見えるだろうか?そこに「歪み」は見えないだろうか?「透明だから、何も見えないだろう。」という人もいるだろうが、あるグッズを使うと、もう明らかに見えてくるのである。それが、下の写真である。レンズを固定している辺りをよく見てもらいたい。不思議な
虹模様と十字の模様が見えるはずだ。
 

ところがあるグッズを使うと…

 プラスチック等は製造過程での不均一な応力や、外力により複屈折性を示す。光弾性と呼ばれる現象である。そのため、偏光面を直行させた偏光フィルターの間にそういうプラスチックなどを挟みこむと、その弾性体の内部に働いている応力分布の状態を調べることができる。それを応用したのが、偏光顕微鏡などである。

 例えば、下の写真はカセットテープのケースの左側部分を、偏光面を直交させた二枚の偏光フィルターで挟んでみたものである。見事に弾性体の内部に働いている応力分布が可視化できているのがわかると思う。これを応用すれば、例えば熱変形をしているようなものであれば、透明体の熱分布も簡易的に見て取ることができる。
 

カセットテープのケースの弾性体の内部に働いている応力分布

 そういうわけで、先の写真あるいはそれを拡大した次の写真のように普通では見えない透明なプラスチックレンズの中に隠れている「ストレス」を見て取ることができるわけだ。
 

メガネのレンズの中のストレスを可視化したもの
右は普通にみたもの
左は偏光フィルターを使ってみたもの

 とりとめもないが、今回は透明なメガネの影に隠れたストレスに光を当ててみた。ちゃんと見ようと思いさえすれば、目に見えるものは数多くある。「見える?見えない?」の境界線はその人自身が決めるのである。「できるかな?」では、これからも色々な「見える?見えない?」を追求し、「見えるかな?」について考えていきたいと思う。
 

2003-04-28[n年前へ]

水面に映る緑の木々 

 水面に写る景色はとても綺麗。それは、光の偏光を基準に反射する光りが選択させるために、水面で反射する景色の中では空はしっかりと蒼く雲はしっかりと白く木々がしっかりと緑に見えるせいかもしれないし、それだけではないのかもしれない。
 もしかしたら、鏡の向こうの不思議な世界を見るような気持ちになるからかもしれない。

水面に映る緑の木々






2003-08-28[n年前へ]

「Left and Right」「水の向こう」「空の向こう」 

 
 木々を背景にして「左の道」と「右の道」が同時に見える。野田秀樹風に言えば「Left way」と「Right way」だ。「残された道」と「正しい道」。正しい道は人によって違う。さてと、どっちに曲がろうか。
 水に反射するたんぽぽを眺める。水に反射して写る空や草は、偏光フィルターをかけて覗く世界の様にとても鮮やかで美しい。鏡に反射して映る道や水に反射して映る世界にはとても惹かれる。

「Left and Right」「水の向こう」「空の向こう」「Left and Right」「水の向こう」「空の向こう」「Left and Right」「水の向こう」「空の向こう」








■Powered by yagm.net