2001-02-02[n年前へ]
■「雪だるま」がいる景色
大きな影の下で
私の職場は暖かな場所にあるので、一年を通してほとんど雪が降ることはない。それでも、先日の大雪では私の職場にも雪が積もった。今年はまるで毎週末に雪が降っているような感じさえする。
雪景色ももちろんきれいなので、ずっと眺めていたいわけではあるが、道や駐車場には除雪をしなければならない。というわけで、除雪をした時に出たたくさんの雪を使って、雪だるまがたくさん作られていた。下の写真は、雪が降った三日後に撮った。夜、明かりの下の街路樹を眺めている雪だるまの後ろ姿である。
とてもずんぐりむっくりな感じで、ちょっと頭でっかちで、作者のセンスを感じさせる雪だるまのベストプロポーションである。もちろん、色々な雪だるまがいて、色々なプロポーションの雪だるまがいるわけではあるが、どれもちょっと小太りの良いお父さんという感じだ。
もちろん、そんな雪だるま達も陽に照らされて、だんだんと小さくなっていく。下の写真は雪が降ってから四日後に、日陰で佇む雪だるまの親子だ。ずいぶんと小さくなってしまっている。
この雪だるまを作った人は、消火栓の施設の日陰になるような場所に雪だるまの親子を佇ませたわけである。きっと、それは偶然ではないだろう。その人は、何かを考えた上で、雪だるまの親子の居場所としてこの場所を選んだはずだ。施設管理の邪魔になる消火栓の施設の前に、あえて雪だるまの居場所を作ったことは、とてもとても趣のあることだ。
ところで、この雪だるまを見るとずいぶんと頭が小さくなっている。胴体の大きさに較べてずいぶんと頭が小さい。雪だるまが作られた最初の頃の体のバランスとはずいぶん違うものになってしまっている。なぜ、こんな形に変化してしまったのだろうか?
考えてみればこんな形に溶けていくのもあたりまえなのである。雪が溶けていくスピードは雪が得る熱量に比例するだろう。それは、雪の表面積に比例するのが自然である。雪が外界から、境界としての表面を介して熱を得て、そして溶けていくのである。雪だるまのような球からなる物体では球の半径の二乗に比例し、一方、球の体積は球の半径の三乗に比例するわけだ。だから、雪で作った球が溶けていく量を体積で正規化すれば、大きい球ほど遅く溶け、小さい球ほど早く溶けていくということになる。そう、雪で作った球は大きいほど溶けにくいのだ。
ところで、雪だるまの胴体に較べて頭は比較的小さい。だから、雪だるまの頭の方が早く溶けてもっと小さくなる。それに対して、胴体の方は大きいので比較的遅く溶けていく。結局、上の写真のように大きな胴体に小さな小さな頭がついているような形に変化していくわけである。もちろん雪だるま全体としても同じ話なわけで、大きい雪だるまほど溶けにくくて、小さな雪だるまほど早く溶けてしまうことになる。
そういえば、日の当たる駐車場に佇む雪だるまの親子もいた。陽の当たるアスファルトの上で、親雪だるまは子雪だるまの南側に立っていた。そして、小さな子雪だるまは大きな親雪だるまの影の中でじっと座っていた。親雪だるまは大きかった。だから、強い日差しに照らされても、きっと溶けはしないだろう。そして、小さな雪だるまは親だるまの影の中にいれば、小さくてもまだまだ大丈夫かもしれない。少なくとも、次に雪が降るまでは大丈夫かもしれない。次に雪が降れば、また雪だるまは大きく増えていくことだろう。
今年は毎週末に雪が降っているような感じさえするくらいだから、きっと大丈夫なんだと思う。
2003-08-31[n年前へ]
■ミルメーク
ミルメークはコーヒー+砂糖の粉末飲料で、牛乳に入れるとコーヒー牛乳に早変わり!コツは牛乳瓶からミルメークの体積分牛乳があふれてしまうので、少し飲んでから入れること、というミルメーク。コーヒー味と苺味の記憶があるような、と。何故か思い出したのでリンクしておこう。
2004-08-23[n年前へ]
■キリン樽生ビールサーバーの秘密
ビールの科学 「炭酸ガスボンベの寿命」編
今年の夏はずいぶんと暑かった。東京では40日間も気温30度以上の「真夏日」が続いた。なんでも、今年の夏は「真夏日」連続日数記録を更新したらしい。こんなに暑い日が続くと、体調に気をつけていないと夏バテになりかねない。
しかし、ものは考えようで、暑ければ暑いほど、その日に飲む冷えたビールが美味しくなる。ジリジリと暑い陽射しの中で飲むキンキンに冷えたビールは格別だ。暑い「真夏日」が終わった夜に飲む、冷えたジョッキの中のビールは素晴らしく美味しい。40日間にもわたって「真夏日」が続くと言うことは、そんな美味しいビールを40日間も味わうことができるわけで、考えようによっては「素晴らしき真夏日!」なのである。真夏日の夕暮れ、冷えたジョッキにビアホールのビールサーバーから冷えたビールにクリーミーな泡を注いで、それをゴクゴク飲み干すのは格別なのだ。
もちろん、40日間も真夏日が続いても、毎日ビアホールに通うことなどできるわけではない。何より先立つものが足りなかったりするわけで、実際には家でビールをグラスに注いで飲むことになる。しかも、昨今の低調な経済情勢下では、自宅ですら40日間もビールを飲み続けることはできないのである。現実には、哀しいことに「40日間のビール生活」ではなく、「40日間の発泡酒生活」だったりするのだ。しかも、発泡酒を選ぶ基準は、味なんか全然関係なくて単に値段だったりもするのである。結局のところ、判断基準は単位重量辺りの値段、ただそれだけに尽きるのである。とはいえ、値段が半分なら同じオカネで二倍の量を飲むことができるわけで、とりあえずは「素晴らしき?発泡酒!」なのだ。
そんな風に、いつの間にかビアホールが自宅に姿を変え、いつの間にかビールが発泡酒に変身してしまうわけだが、たまにはビールサーバーで「冷えたビールとクリーミーな泡」を注ぎたくもなる。そこで、そんな時にはこんな家庭用簡易ビールサーバーを使うことになる。希望小売価格2.980円(消費税別)のお手軽なビールサーバーでビールを注ぐのが、低迷する経済下における現在の日本風「正しい夏の過ごしかた」なのである。ビアホール自宅でビアサーバー樽生サーバーからビール(時には中身を発泡酒に詰め替えて)をジョッキにこんな風にビールを注いで、値段が安い分だけ多く飲み干すのである。とにかく、質より量の発泡酒生活なのだ。
というような生活が続いていた先日に、キリンの樽生サーバーで(久しぶりに発泡酒でなく)ビールを飲んでいた。樽生サーバー用の1520ml缶に入った一番搾りを飲み干し、さらに交換用の1520ml缶を取り付けて飲み始めると、ほどなくしてビールサーバーからのビールの「出」が悪くなった。キリンの樽生サーバーは、ビール缶の中に炭酸ガスを注ぎ込み、味の劣化を防ぎつつ、同時に炭酸ガスの圧力でビールをビール缶から外の抽出口へ排出している。ところが、その炭酸ガスの圧力が低下して、ビールがビール缶から外へ注ぐことができなくなってしまったのである。
もちろん、キリンビールには何の罪もなく、悪いのは私だ。本来、ビール缶を交換した際には(専用ビール缶に付属してくる)炭酸ガスのミニボンベも交換しなければいけないのだが、その交換をメンドくさがってしなかったので、ガスが途中で無くなってビールをビールサーバーから抽出することができなくなったのである。もちろん、ミニボンベを新品に交換すると、ビールはちゃんと気持ちよく出るようになった。
私は酔っぱらいながらも、「交換用の1520ml缶に入った一番搾りを飲み干すと、交換用炭酸ガスのミニボンベもちょうど無くなる」ということに感心し、キリン樽生ビールサーバーに付いてくる炭酸ガスのミニボンベを調べてみることにしたのである。交換用の1520mlのビールを飲み干すと、ミニボンベの中の炭酸ガスもしばらくしてちょうどなくなる「キリン樽生ビールサーバーの秘密」、つまり「炭酸ガスボンベの寿命」の謎を今回は考えてみることにした。
「キリン樽生ビールサーバー」付属のミニボンベを手にとって眺めてみると、充填されているガスの重量は10グラム(g)と記載されており、体積に換算すると5リットル(Nl=1気圧、0℃下での体積リットル)ほどになる。(製造元の資料によれば)ミニボンベ内部の体積は12.5ミリリットル(ml)で、ミニボンベ内部には常温換算で60気圧ほどの圧力の炭酸ガスが詰まっていることになる。
もちろん、このミニボンベ中に詰められている60気圧の炭酸ガスが直接ビール缶の中に注がれるわけではない。もしも、そんなことをしたならば「ビール抽出ボタン」を押した途端にビールが高圧ガスで押し出されて、抽出口から吹き出してしまう。水道の水圧(0.2MPa)の10倍以上でビールが激しく噴出したならば、おそらくグラスに注がれた瞬間にビールは泡だらけになってしまうに違いない。
しかも、キンキンに冷えた樽生サーバーのビール缶の中にそんな高圧の炭酸ガスを注ぎ込んだら、ビールの味だってひどく変わってしまう。ビールにはペプシコーラやコカコーラと同じようにビールには炭酸ガスが溶け込んでいて、それが気持ちよい美味しさの一因でもあるのだが、あまりに炭酸ガスを多く含むビールは美味しくなくなってしまう。
下に示した図は、温度と圧力が変化した際に、ビールの中に溶け込む炭酸ガスの量が「(溶け込む先の)ビールの体積の何倍になるか」という「ガスボリューム」を示している。この図を眺めれば判るように、低温のビールには炭酸ガスが多量に溶け込んでしまう。もちろん、炭酸ガスの圧力を高くすればさらに多くの炭酸ガスがビールの中に溶け込んでしまう。つまり、冷えたビールに高圧の炭酸ガスを注入したりすると、ビールには炭酸ガスが過剰に溶け込んでしまうのである。
このグラフを眺めると、例えば(ビールの飲み頃の温度である)8℃位に冷やされたビール缶に4気圧(atm)の圧力で炭酸ガスを注入すると、なんとそのビールの体積の5倍程度の炭酸ガスが溶け込んでしまうことがわかる。
日本で一般的なビールの適切(美味しい)とされるガスボリュームは2.4-2.85程度であり、炭酸の強いバイツェンビール(Germanwheat beer)でも3強でコーラですら3.5程度である。だから、そんなビールの体積の5倍などという炭酸ガスを多量に含んだビールは炭酸の刺激がやたらに強い美味しくないビールに変身してしまうに違いない。だから、ビール缶の中を高圧の炭酸ガスで満たすわけにはいかないのである。
スタイル | 適切なガスボリューム |
British-style ales | 1.5 - 2.0 |
Porter, stout | 1.7 - 2.3 |
Belgian ales | 1.9 - 2.4 |
European lagers | 2.2 - 2.7 |
American ales & lagers | 2.2 - 2.7 |
Lambic | 2.4 - 2.8 |
Fruit lambic | 3.0 - 4.5 |
German wheat beer | 3.3 - 4.5 |
そこで、キリン樽生サーバーの分解図をよく眺めてみると、炭酸ガスボンベを入れるガス容器の上部に「炭酸ガスの圧力を一定に抑える減圧用の部品」が取り付けられている。炭酸ガスボンベをこの減圧部に繋ぎ、圧力を一定に抑えた上で、ビール缶の中に炭酸ガスを注ぎ込んでいるのである。だから、ミニボンベ内の数十気圧の炭酸ガスが直接ビール缶の中に入り、ビール缶からビールが抽出部から急激に噴出したり、炭酸ガスがビール缶の中で多量にビールに溶け込むことを防いでいるわけだ。
それでは、減圧部品により炭酸ガスはどの程度の圧力に調整されるのだろうか?ビール缶の中の炭酸ガスはどの程度の圧力になっているだろうか?それは「ビールが適切な炭酸ガスを含む程度の圧力」になるようにすることを考えれば良いだろう。冷えたビールが適度の炭酸ガスを含むためにはどんな圧力が必要になるかを考えれば、ビール缶の中の炭酸ガスの適切な圧力を知ることができる。
そこで、下「温度と圧力が変化した際のビールの中に溶け込む炭酸ガスの量」を「適切なビールのガスボリュームである2.0-3.0付近、及び、ビールの適切な飲み頃温度4-12℃付近」を拡大したグラフを眺めてみよう。このグラフ中で、青い色で示した領域が適切なガスボリュームの範囲であり、赤い色で示した領域が炭酸ガスが抜けてしまった状態、もしくは、ガスを過剰に含んでいる状態である。このグラフを眺めると、ビールが飲み頃の温度6~8℃位で、ガスボリュームが2.5程度になるようにするためには、圧力を2.4(kg/cm^2 ≒ atm )程度にすれば良いことがわかる。その圧力にしておけば、ビールの温度が4℃~12℃位まで変動しても、ガスボリュームを2~3の範囲におさめることができる。
また、内部の圧力が2.4気圧程度あれば、外気圧との差によりビールをビール缶からチューブを介して抽出部からグラスへ注ぐ圧力としても十分である。樽生サーバーの炭酸ガス減圧部は、ビール缶の中の圧力が(おそらく)2.4気圧(atm)程度になるように調整することで、よく冷えた温度のビールが適切な量の炭酸ガスを含むようにすることができるし、ちゃんとビール缶の中からビールをグラスに注ぐことができるようにしているのだろう。
さて、ビール缶の中の炭酸ガスの圧力がわかれば、次に「1520mlのビールを飲み干すと、ミニボンベの中の炭酸ガスもしばらくしてちょうどなくなるキリン樽生ビールサーバーの秘密」つまり「炭酸ガスボンベの寿命」を考えてみることにしよう。まず、1520ミリリットル(ml)のビールを飲み干すのに必要な炭酸ガスの量はすぐわかる。最低限必要なのはビール缶の中(1520ミリリットルのビールと同体積とする)を2.4気圧(atm)程度の圧力で満たしきる量である。
- ビール缶の中のビールを排出し、ビール缶の中を2.4気圧(atm)の炭酸ガスで満たす量 1520× 2.4 リットル(Nl)
- ビールの泡を作り出すのに必要な炭酸ガスの量 1520 × 3/7 ≒ 1520 ×0.4 リットル(Nl)
ということは、「ビール缶の中のビールを排出するための炭酸ガス」と「ビールの泡を作り出すための炭酸ガス」の合計は
- グラスに注ぐビールの量 × ( 2.4 (ビールに含まれる炭酸ガスの量) +0.4(グラスの上の泡の炭酸ガス) )
- ≒ グラスに注ぐビールの量 × 2.8
冒頭に書いたように、付属の炭酸ガスミニボンベの内容量は5リットル(Nl)なので、それは必要量4.3リットルに対して20%ほど多い量であることがわかる。そして、ビール缶二本分に使うには足らず、ビール缶の交換と共にガス缶も交換しなければならないことも理解できる。「真夏日」の夜に樽生サーバーでビールを飲みながら感心した、「交換用の1520ml缶に入った一番搾りを飲み干すと、交換用炭酸ガスのミニボンベもちょうど無くなる」仕組みは(おそらく)こんな感じになっているのだろう。
いつの間にか、真夏日の日々も終わってしまい、日中でも時折は涼しさすら感じられるようになった。それでも、「キリン樽生サーバーの秘密」や「炭酸ガスのミニボンベの寿命」をふと思い出しながら、晩夏の夜に冷たいビールを飲んでみるのもきっと面白いはずだ。あるいは、何も考えずにビールを飲んでみても、それでも気持ちが良くなるに違いない。
ガスが抜けたビールは不味いけれども、ガス量がほど良く調整されたビールを飲めば、きっと気持ちよく気分のガス抜きができる。樽生サーバーの炭酸ガスボンベはガスを抜くと寿命が短くなってしまう。けれど、ビールで気持ちのガス抜きをすればきっと寿命は長くなるに違いない。夏の終わりには、一日の終わりには、ビールを飲むのが気持ち良い。 (…発泡酒だけど)
2004-11-07[n年前へ]
■「コーラの科学」と「ナニワのオカン」
「沈むコーラ」と「浮かぶコーラ」
「水槽に沈むコーラ」と「水に浮かぶダイエット・コーラ」
今年の夏はずいぶんと暑く、真夏日が一月以上続いた。そのため、ソフト・ドリンク類の売り上げが昨年の二倍近く売れたコンビニなども多かったようだ。家の近くのコンビニで、汗をかいた後に、スポーツ飲料や冷たいビールを買って、そしてゴクゴクと飲み干していた人たちも多かったかもしれない。あるいは、夏のキャンプ先で、川の畔の水中にドリンクの缶を沈め、いつの間にかキリリと冷えたビールやジュースを味い楽しんだ人たちもいることだろう。それとも、夏祭りの夜店の水槽の中に沈んでいるジュースを買ってもらって飲んだ子供たちも多いだろうか。
ところで、「川の水や夜店の水槽の中にドリンクの缶を沈めて、ドリンク缶を冷やした」と何気なしに書いた。しか、し「水槽の中にドリンクの缶を沈めて」というからには、当然ドリンク缶は水よりも重いということになる。ドリンクの缶が水の中でブクブクと沈んでいるからには、それらの缶というものは水に浮かぶことができない「カナヅチ」でなければならないはずである。とはいえ、「カナヅチ」でなければならないはずとは思うのだが、それを確認したことはない。そこで、試しにダイエーで買ったダイエー・コーラの350ml缶(写真中の赤い缶)を洗面台で水中に入れてみると、ブクブクと確かに水底に沈んでいる。…なるほど、コーラ缶はどうやら水より重い「カナヅチ」のようだ。
ところが、よくよくこの写真を眺めてみると、その横でプカプカと水面に顔を出して浮かんでいる別のコーラ缶がいることがわかるハズだ。そう、コーラ缶は水の中に沈んでいるのに、なぜかダイエット・コーラの缶(手前の白い缶)は水に浮かんでいるのである。つまり、ダイエット・コーラの350ml缶はナント水よりも軽いようだ…?実験に使った缶は(私がビンボーなので…)ダイエー・ブランドの一本40円ナリのコーラだったが、由緒正しい米国コカ・コーラで実験したようすや、その解説などもあって、やはり一般的にコーラ350ml缶は水に沈むのに対して、ダイエット・コーラ缶350mlは水に浮くようである。何故に普通のコーラ缶は沈み、ダイエット・コーラ缶はプカプカと浮くのだろうか?
350mlコーラ缶の「浮き沈み」を計算してみよう!
その謎を探るため、とりあえず「コーラ缶350mlの水中における重さ」を計算してみることにしよう。そこで、まずはコーラの350ml缶を定規で測ってみると、ドリンクが入っている部分の高さは大雑把に114mmだった。そして、直径は大体64mmである。ということは、350mlコーラ缶の体積は
π×半径 (65mm / 2) ×半径 (65mm / 2)× 高さ (115mm) ≒ 375 cm3となり、およそ 375 cm3 程度であることがわかる。350ml缶というくらいだから、おそらく缶の中に入っているコーラは350~355ml(12 オンス)だろう(ちなみに、米国からの輸入品であるダイエーのコーラ缶には、内容量は355mlと書いてあった)。そして、缶の中の差し引き375- 350~355 ml ≒ 20~25mlの空間には炭酸ガスや窒素などが入っているのだろう。ということは、つまりコーラが入った350ml缶は全体として20~25gの浮力を受けることになる。
また、アルミ缶自体の重さはおよそ16gほどだという。アルミの比重は2.7g/cmだから、体積は5.9cm3である。同体積の水の重さが5.9gだから、16gのアルミは当然5.9gの浮力を受ける。ということは、水中でのアルミ部分は差し引き、アルミの重さ(16g)? アルミの体積が受ける浮力(5.9g) = 10.1gほどの重さになっていることになる。つまり、アルミ缶は10gほどの「重し」を外殻としてまとっているわけである。
さて、すると残りの肝心のコーラの液体自体の重さはどの程度になるのだろうか? それは簡単、なぜならコーラは結局のところ、「砂糖水」である*1。原材料の表示は「糖類(果糖ぶどう糖液糖、砂糖)、カラメル色素、酸味料、香料、カフェイン」となっているが、つまりはほとんどが糖類である。何しろ、350mlのコカ・コーラには35gもの量の糖分が溶け込んでいるのである(コカ・コーラのライバル「ペプシ・コーラ」の場合には、40gほどにもなる)。砂糖(糖分)が水に溶け込んでも水溶液の体積はほとんど変わらないから、実質この砂糖(糖分)の重さ35gだけ「350ml缶の中にあるコーラの液体自体の重さ」は水よりも重いことになる。
つまり、コカ・コーラの350ml缶は、水と比べると
- 缶の中の空き体積分の浮力:20~25g
- アルミ部分:10g
- コーラの液体(に溶け込んでいる糖分):35g
*1
余談になるが、かつて「砂糖水を売って一生を終える気か」という口説き文句により、ペプシ・コーラ社長だったジョン・スカリーがアップル・コンピュータの社長に引き抜かれたのは有名な話である。
ダイエット・コーラの秘密
おやおや? それならば何故ダイエット・コーラがプカプカと水に浮いていたのだろうか?まさか、「ダイエット・コーラはダイエットしたコーラやろ?ダイエットしたんやったら、その分軽くなるやん?」なんて自分本位で超感覚的、つまりは「ナニワのおかん」的な意見を言う人はいないだろう。「何でコーラがダイエットすんねん!?」なんである。「何でコーラがダイエットしたら浮かなアカンねん!?」なのである。というわけで、ナニワのおかんはとりあえず無視して、私たちは科学的に考え・調べてみることにしよう。
とりあえず、ダイエット・コーラの原材料を眺めてみる。すると、「カラメル色素、酸味料、甘味料(アスパルテーム・Lーフェニルアラニン化合物、アセスルファムK、スクラロース)、香料、保存料(安息香酸Na)、カフェイン」というように書いてあることがわかる。つまり、通常のコーラでは「糖類(果糖ぶどう糖液糖、砂糖)」であったものが、ダイエット・コーラの場合には人工甘味料の「アスパルテーム・Lーフェニルアラニン化合物、アセスルファムK、スクラロース」に変わっているわけだ。
アスパルテームは1966年に甘味料として注目され始め、そして1982年に「味の素」が製造特許*2をとった人工甘味料である。アスパルテームは砂糖の150倍もの甘味を持っている。そして、アセスルファムKは1967年に生み出された人工甘味料で、なんと砂糖の200倍もの甘味度がある。甘味度というのは「砂糖と同じ甘さ」を感じさせるためには、水溶液中に「(砂糖と比べて)どの程度の重さ」の甘味料を溶かさなければならないか、ということを示している。だから、甘味度が150~200ということは、「同じ甘さを感じさせるためには、(砂糖に比べて)甘味料の重さが150~200分の1ですむ」というわけである。つまり、通常のコーラで必要だった35gの砂糖が、アスパルテームやアセスルファムKといった人工甘味料を使えば、
35g / 150~200 ≒ 0.18~0.23というわけで、たったの0.18~0.23gですむのである。ということは、結局のところ通常のコーラに溶け込んでいる糖分の重さと、ダイエット・コーラに溶け込んでいる人工甘味料の重さはずいぶんと違うことがわかる。
*2
この特許は発明対価の22億円を巡って、「味の素」と元社員の間で係争中である。今年2月の東京地裁での判断は1億9千万円を元社員に支払うようにというものだったが、さらに控訴されているため、決着にはまだ時間がかかりそうだ。
実は正しかった「ナニワのおかん」 恐るべき野生の感覚!?
ということは、ダイエット・コーラの350ml缶は、水と比べてみると
- 缶の中の空き体積分の浮力:20~25g
- アルミ部分:10g
- ダイエット・コーラ(に溶け込んでいる糖分):0.2g
0.2 g + 10g - (20~25g) ≒ - 10~-15gとなる。つまり、なんと同体積の水より10~15gも軽いことになるのである。だから、ダイエット・コーラの350ml缶を水の中に入れると、当然のごとくプカプカと浮いてきてしまうわけである。一言で言えば、通常のコーラが「溶け込んでいる砂糖(糖分)」の重みでブクブク…と水の中に沈んでいってしまったのに対して、ダイエット・コーラの場合はダイエットのために砂糖をカットして人工甘味料を使ったため、砂糖(糖分)の重さ分軽くなって、プカプカと水に浮いたのである。
…ん?砂糖を「ダイエットのため」にカットしたら、「その分軽くなって」浮いた…? そう、ナニワのおかんの「ダイエット・コーラはダイエットしたコーラやろ?ダイエットしたんやったら、その分軽くなるやん?」ニいう(一言で言えば)ワケのわからない超ヘリクツは実は見事なまでに正しかったのである。恐るべきは「ナニワのおかん」の野生の本能だ。私たちが、「コーラの糖分をアスパルテーム・Lーフェニルアラニン化合物、アセスルファムK、スクラロースに置き換えた分…」なんて長々しく考えて計算するところを、何にも考えずに知性でなく直感だけで「ダイエットしたから、そら軽くなるやろ」と言い放つのだから…。恐るべき、(年を召された)女性の本能だ…。 _|‾|○
とはいえ、えてしてナニワのおかんは、ダイエット・コーラではなくて35gもの砂糖(糖分)が入っている通常のコーラをガブ飲みし、まるで「水にブクブクと沈むコーラ缶」のようにブクブクと肥えていたりする。「コーラよりアンタがダイエットせなあかんちゃうんか!」とも思ったりはするのだが…。
実は日本のコカ・コーラの350ml缶はプカプカ浮かぶ…!?
ところで、経済事情(一言で言えば私がビンボーだから)により、今回はコカ・コーラでなく、ダイエーで売っていた一本40円の米国産コーラとダイエット・コーラを使って実験をしてみた。しかし、それだけではどうかと思ったので、(大枚払って)一本だけ日本コカ・コーラの350ml缶を買って洗面台で水中に沈めてみた。…いや、沈めてみようとしたのである。ところが、日本コカ・コーラの350ml缶(右手前の赤い缶)は全然沈まずにプカプカ浮かんでばかりなのだ(右の写真)。ダイエー・コーラ(奥の赤い缶)と日本コカ・コーラ(手前右)の違いと言えば、ダイエー・コーラが355mlの内容量で、(米国コカ・コーラと違って)日本コカ・コーラが350mlであるということ、つまり(容器の容量が同じであるとするならば)浮力が日本コカ・コーラの方が5g大きく浮きやすいということと、(表示カロリーから予想すると)ダイエー・コーラの方が3g程度砂糖(糖分)の使用量が多くその分沈みやすいということである。もちろん、少し容器の体積も違う。それらは微妙な違いに過ぎないが、その微妙な違いにより日本産コカ・コーラは米国産コーラと違って水に沈まずに浮かぶのかもしれない…。
ところで、この「水に浮かぶダイエット・コーラと沈むコーラ」ではないが、コーラ一つとってみても色々な科学を知ることができる。キャンプ先の川辺や夜店の水槽の中に沈んでいるジュース缶の中には、「沈むコーラの350ml缶」から「人工甘味料の化学」や「浮力という物理」や「ナニワのおかんのスゴさ」が詰まっている。日常で目にする景色の中には、色んな科学の入り口が潜んでいる。街中には数限りない面白い謎が満ちあふれている。
2005-03-31[n年前へ]
■「ふぅぅー」は冷たく「はぁぁ〜」が暖かいホントの理由 前編
「ふぅぅー」と「はぁぁ〜」の温度(≠体感)差は2.5℃。だけど…
先日、「笑っていいとも」を眺めていると、とても私の興味を惹く話題を放送していた。それは、視聴者から番組に対して届けられた次のような質問から始まる話だった。
手が冷たいときに、よく「はぁぁ~」と息を吐いて手を暖めたりします。そんな風に息で手を温めることがある一方で、口を細めて「ふぅぅー」と息を吹いて、手を冷やしたりもします。例えば、掌に「はぁぁ~」と息を吐くと「息が暖かく感じる」のに、それとは逆に「ふぅぅー」と掌に息を吹くと今度は逆に「息が冷たく感じ」ます。どうして、息の吐き (吹き)方によって「同じ息の暖かさ」が違うのでしょうか?
その解説の概要をほぼそのまま書くと、
| 「はぁぁ~」と息を吐いた場合よりも、「ふぅぅー」と息を吹いた場合の方が口の中における空気の圧力が高くなっている。口の中で圧縮された息は、唇から外へ出たとたんに圧力が下がる(体積が大きくなる)。 その際、「息の空気」と「外気」の間で熱の授受が行われない断熱過程で(体積が膨張し)圧力が低下することになるのだが、そのような場合には(フェーン現象のちょうど逆に)息として吐かれた空気の温度が下がってしまう。つまり、「ふぅぅー」と口を細めて吹かれた息は口の外に出た途端に温度が低くなる。 ところが、「はぁぁ~」と吐かれた息は「圧力変化がほとんどないまま」口から出るので、温度の変化がほとんどなく、体温に近い暖かい温度のままになっている。そのような違いにより、「ふぅぅー」は冷たく、「はぁぁ~」が暖かいのである。 |
というようなものだった。この解説に耳を傾けながら、私は『へぇぇ~、「ふぅぅー」と「はぁぁ~」で本当に息の温度が違うものなんだぁ。へぇぇ~、そうなんだぁ~』と納得つしつも、少しばかり不思議な気持ちになった。
確かに、「ふぅぅー」と「はぁぁ~」という「二つの異なるやり方」で自分の掌に息を吐いてみると、ずいぶんと息の温度が異なって感じる。「はぁぁ~」と息を吐くと息がとても暖かく感じるし、「ふぅぅー」と息を吹くと(さっきと同じ息なのに)息がとても冷く感じる。そして、この「二つの異なる息」の温かさは大きく異なっているように感じる。息が口から出る瞬間の圧力変化が原因で、「それほどの温度差」が生じるものなのだろうか? もちろん、番組の中では特に数字を挙げた説明もされていなかったので(あくまでバラエティ番組の「笑っていいとも」なんだから)、息を「ふぅぅー」と吹く場合と「はぁぁ~」と吐く息の間で感じる温度差についてちょっと調べてみることにした。
まずは、息が口から出る瞬間の圧力変化量を推定するために、口の中における圧力がどの程度の大きさなのかを考えてみよう。息を吸うときには「胸腔内部の気圧が下がる」ことで空気を体内に取り入れる。そして、息を吐くときには「胸腔内部の気圧が上がる」ことで、肺から息が口から外へ排出されることになる。このような呼吸の過程において、口・唇から肺内部にわたる人間の体内においての(呼吸における空気の速度が非常に遅いことを考えれば)空気圧はほぼ一定と考えて良いだろう。つまり、口を境にして体外・体内で圧力が異なり、体内=「口・肺内部」が高くなったり、低くなったりすることにより、呼吸が行われているわけである。そこで、唇を境として、「体内の気圧」と「体外の気圧(=大気圧)」が異なっている、というモデルでとりあえず考えてみることにしよう。
そのような呼吸を行っている際に、「口・肺内部における空気圧」がどのような時間変化を示した一例が図.1である。実線で「通常の呼吸時の肺(口)内部の空気圧」時間変化を示し、破線で(ちょうど、「ふぅぅー」と息を吹く時のように)口を細めて軽く息を吹き出した場合の「口・肺内部における空気圧」時間変化を示している。通常の呼吸であれば、大気圧(101.3 kPa)を中心として、プラスマイナス 0.2 kPaの程度の範囲で上下しているし、口を細めて息を吹いたり吸ったりするような場合だと、プラスマイナス 2 kPaの範囲内で上下していることになる。
図.1 口・肺内部における空気圧の時間変化実線:通常の呼吸の場合破線:口をすぼめて呼吸した場合
つまり、普通の呼吸では体内と体外の圧力の差は0.2%程度に過ぎないが、「ふぅぅー」と息を吹くような場合には、2%ほど体外と体内で圧力が異なることになる。
もちろん、もっとキアイとガッツで強く息を吹いたり吸ったりするのであれば、体外と体内の空気圧の差はこれより大きくなるに違いない。そうは言っても、「気道内での圧力が(大気圧との差として) 3.92kPa を超えると肺の損傷が起きる恐れがある」という話もあるくらいだから、体内での空気圧は根性を最大限込めて、血管がブチぎれるくらい力んでみても、せいぜい101 ± 3 kPa の範囲に収まるくらいだと考えておくのが、健康的には良いだろう。もし、本当にそれ以上根性を込めたとしたら、血管はともかく肺がブチ切れてしまうに違いない。
ということは、「ふぅぅー」と息を吹く時には、息は「体内で101 + 3 (kPa) = 104 (kPa)程度」の圧力から断熱過程で「大気圧相当の101.3 kPa」まで圧力が変化することになる。その圧力変化が一瞬で生じ、息と他のモノの間で熱の受け渡しが無かったとしたら、つまりは断熱過程のもとで圧力変化が生じた場合には、ポアッソン(Poisson)の式により、変化前後の気体の温度と圧力の間に、
- T p-(γ-1)/γ = 一定
- T: 空気の温度
- p: 空気の圧力
- γ: 空気の比熱比 (標準空気の比熱比 = 1.4)
そこで、息の(温度と圧力)が仮に体内で(32 ℃, 104kPa)だったものとして、息が口から外(圧力 = 大気圧 101.3 kPa)へ出たときに何度程度になっているかをポアッソンの式にもとづいて計算してみた。そして、その結果を簡単なグラフにしてみたものが図.2 である。なお、図.2では、○で示す「体内で(3 2℃, 10 4kPa)だった息」が、口から外に出た瞬間の温度を示している。ここでは、横軸が外気圧であり、縦軸が(その外気圧のもとでの)息の温度になっている。
図.2 体内で(32℃, 104kPa)の息は口から外(101.3kPa)へ出たときには、息は29.5℃になっている
このグラフを眺めると、例えば外気圧が 101.3 kPa であれば、その外気圧のもとでの息の温度(×で示す) は、29. 5℃ほどであることがわかる。つまり、「ふぅぅー」と息を吹いた場合、体内で30 ℃ほどであった息が1.5 ℃ほど温度が低下して29.5 ℃程度になっている、ということになる。もちrん、実際には体内での息の湿度は80%程度にはなっているだろうから、おそらく息の比熱比は1.4よりほんの少し小さいだろう。だから、実際には吹かれた息の温度はもう少し(といってもほんの少しだが)暖かいだろう。
いずれにせよ、このように、「ふぅぅー」と吹かれた息は口から外へ出たとたん、確かに2 ℃強ほど温度が低下するわけだが、「はぁぁ~」と息を吐く場合には「息の温度」は口の外で何度くらいになっているものだろうか?つまり、「ふぅぅー」と「はぁぁ~」というやり方で吹かれた「二つの異なる息」は何度くらい温度が異なるものだろうか?
「はぁぁ~」というような「非常にゆっくりと」「口を大きく開けた状態で」息を吐いた場合、体内と体外での圧力変化は「通常の呼吸時」よりさらに小さい。つまり、体内と体外でほとんど圧力差が内と考えるのが自然である。そのような場合、「体外に吐かれた息の温度」は「体内での息の温度」とほぼ同じであることになる。つまり、今回の計算で使った数字を使うと、「はぁぁ~」と息を吐いた場合、息の温度は32°ほどであることになる。
ということは、「笑っていいとも」で解説されていたように、 「ふぅぅー」と吹かれたかれた息は「はぁぁ~」と吐かれた息より2.5 ℃くらい温度が低いということがわかる。なるほど、「ふぅぅー」と「はぁぁ~」という二つの息は温度が確かに異なるようだ。とはいえ、私たちが感じる「ふぅぅー」と「はぁぁ~」の温度差は果たして、この2 ℃程度の数字で説明できるものなのだろうか? もちろん、2 ℃強と言えば十分な温度差であるかもしれないが(37℃の体温と39℃の体温は大違いだ…)、何だか30℃でも32℃でも(私の感覚からすると)どちらにせよ「暖かい」ような気がしないでもない。ヘンな例え話だとは思うが、気温が30℃でも32℃でもどちらにしても暖か い(というより熱い?)ように思える。決して気温30℃が涼しかったり冷たかったりするようには思えない。
というわけで、断熱過程下での圧力変化により生じる温度変化だけで「ふぅぅー」は冷たく「はぁぁ~」が暖かい理由とすると、何だか少し不思議な気分になってしまう*。 そこで、 「ふぅぅー」と息を吹くときと、息を「はぁぁ~」と吐くときの違いについて、他にも影響を与えそうな原因なども考えながらもう少し追いかけてみることにしたい。そして、『「ふぅぅー」は冷たく「はぁぁ~」が暖かいホントの理由』について考えてみたいと思う。というあたりで、(ちょっと長くなってしまったので)「断熱過程下での圧力変化」以外の他要因については次回に続くのココロ、だ。
それに加えて、「何かの現象を説明するのに、一つの理由だけを考える」というのは、えてして落とし穴にハマリがちだったりもする(そんな気がするだけだが)ので、他の理由も考えたり知ってみたい、と思う。