hirax.net::Keywords::「分解」のブログ



2003-06-08[n年前へ]

偵察衛星、試験運用で「分解能」半分以下 

 「衛星に積まれた光学センサー(望遠鏡)は地上の1メートル大の物体を区別する能力(分解能)を備えるはずだったが、5月末に始まった試験では、2〜3メートル大のものがようやく区別できる程度にとどまっている」という記事。これではアフリカ人がオペラグラスで眺めているのと同じ性能になりかねないのである…。

2004-08-23[n年前へ]

キリン樽生ビールサーバーの秘密 

ビールの科学 「炭酸ガスボンベの寿命」編

 今年の夏はずいぶんと暑かった。東京では40日間も気温30度以上の「真夏日」が続いた。なんでも、今年の夏は「真夏日」連続日数記録を更新したらしい。こんなに暑い日が続くと、体調に気をつけていないと夏バテになりかねない。

 しかし、ものは考えようで、暑ければ暑いほど、その日に飲む冷えたビールが美味しくなる。ジリジリと暑い陽射しの中で飲むキンキンに冷えたビールは格別だ。暑い「真夏日」が終わった夜に飲む、冷えたジョッキの中のビールは素晴らしく美味しい。40日間にもわたって「真夏日」が続くと言うことは、そんな美味しいビールを40日間も味わうことができるわけで、考えようによっては「素晴らしき真夏日!」なのである。真夏日の夕暮れ、冷えたジョッキにビアホールのビールサーバーから冷えたビールにクリーミーな泡を注いで、それをゴクゴク飲み干すのは格別なのだ。

 もちろん、40日間も真夏日が続いても、毎日ビアホールに通うことなどできるわけではない。何より先立つものが足りなかったりするわけで、実際には家でビールをグラスに注いで飲むことになる。しかも、昨今の低調な経済情勢下では、自宅ですら40日間もビールを飲み続けることはできないのである。現実には、哀しいことに「40日間のビール生活」ではなく、「40日間の発泡酒生活」だったりするのだ。しかも、発泡酒を選ぶ基準は、味なんか全然関係なくて単に値段だったりもするのである。結局のところ、判断基準は単位重量辺りの値段、ただそれだけに尽きるのである。とはいえ、値段が半分なら同じオカネで二倍の量を飲むことができるわけで、とりあえずは「素晴らしき?発泡酒!」なのだ。


 
キリン樽生サーバー

 そんな風に、いつの間にかビアホールが自宅に姿を変え、いつの間にかビールが発泡酒に変身してしまうわけだが、たまにはビールサーバーで「冷えたビールとクリーミーな泡」を注ぎたくもなる。そこで、そんな時にはこんな家庭用簡易ビールサーバーを使うことになる。希望小売価格2.980円(消費税別)のお手軽なビールサーバーでビールを注ぐのが、低迷する経済下における現在の日本風「正しい夏の過ごしかた」なのである。ビアホール自宅ビアサーバー樽生サーバーからビール(時には中身を発泡酒に詰め替えて)をジョッキにこんな風にビールを注いで、値段が安い分だけ多く飲み干すのである。とにかく、質より量の発泡酒生活なのだ。

 というような生活が続いていた先日に、キリンの樽生サーバーで(久しぶりに発泡酒でなく)ビールを飲んでいた。樽生サーバー用の1520ml缶に入った一番搾りを飲み干し、さらに交換用の1520ml缶を取り付けて飲み始めると、ほどなくしてビールサーバーからのビールの「出」が悪くなった。キリンの樽生サーバーは、ビール缶の中に炭酸ガスを注ぎ込み、味の劣化を防ぎつつ、同時に炭酸ガスの圧力でビールをビール缶から外の抽出口へ排出している。ところが、その炭酸ガスの圧力が低下して、ビールがビール缶から外へ注ぐことができなくなってしまったのである。

 もちろん、キリンビールには何の罪もなく、悪いのは私だ。本来、ビール缶を交換した際には(専用ビール缶に付属してくる)炭酸ガスのミニボンベも交換しなければいけないのだが、その交換をメンドくさがってしなかったので、ガスが途中で無くなってビールをビールサーバーから抽出することができなくなったのである。もちろん、ミニボンベを新品に交換すると、ビールはちゃんと気持ちよく出るようになった。
 私は酔っぱらいながらも、「交換用の1520ml缶に入った一番搾りを飲み干すと、交換用炭酸ガスのミニボンベもちょうど無くなる」ということに感心し、キリン樽生ビールサーバーに付いてくる炭酸ガスのミニボンベを調べてみることにしたのである。交換用の1520mlのビールを飲み干すと、ミニボンベの中の炭酸ガスもしばらくしてちょうどなくなる「キリン樽生ビールサーバーの秘密」、つまり「炭酸ガスボンベの寿命」の謎を今回は考えてみることにした。

 「キリン樽生ビールサーバー」付属のミニボンベを手にとって眺めてみると、充填されているガスの重量は10グラム(g)と記載されており、体積に換算すると5リットル(Nl=1気圧、0℃下での体積リットル)ほどになる。(製造元の資料によれば)ミニボンベ内部の体積は12.5ミリリットル(ml)で、ミニボンベ内部には常温換算で60気圧ほどの圧力の炭酸ガスが詰まっていることになる。
 

キリン樽生サーバー用の交換用炭酸ガスボンベ
(容量10gと記載されている)

 もちろん、このミニボンベ中に詰められている60気圧の炭酸ガスが直接ビール缶の中に注がれるわけではない。もしも、そんなことをしたならば「ビール抽出ボタン」を押した途端にビールが高圧ガスで押し出されて、抽出口から吹き出してしまう。水道の水圧(0.2MPa)の10倍以上でビールが激しく噴出したならば、おそらくグラスに注がれた瞬間にビールは泡だらけになってしまうに違いない。

 しかも、キンキンに冷えた樽生サーバーのビール缶の中にそんな高圧の炭酸ガスを注ぎ込んだら、ビールの味だってひどく変わってしまう。ビールにはペプシコーラやコカコーラと同じようにビールには炭酸ガスが溶け込んでいて、それが気持ちよい美味しさの一因でもあるのだが、あまりに炭酸ガスを多く含むビールは美味しくなくなってしまう。

 下に示した図は、温度と圧力が変化した際に、ビールの中に溶け込む炭酸ガスの量が「(溶け込む先の)ビールの体積の何倍になるか」という「ガスボリューム」を示している。この図を眺めれば判るように、低温のビールには炭酸ガスが多量に溶け込んでしまう。もちろん、炭酸ガスの圧力を高くすればさらに多くの炭酸ガスがビールの中に溶け込んでしまう。つまり、冷えたビールに高圧の炭酸ガスを注入したりすると、ビールには炭酸ガスが過剰に溶け込んでしまうのである。
 

温度と圧力が変化した際のビールの中に溶け込む炭酸ガスの量

 このグラフを眺めると、例えば(ビールの飲み頃の温度である)8℃位に冷やされたビール缶に4気圧(atm)の圧力で炭酸ガスを注入すると、なんとそのビールの体積の5倍程度の炭酸ガスが溶け込んでしまうことがわかる。
 日本で一般的なビールの適切(美味しい)とされるガスボリュームは2.4-2.85程度であり、炭酸の強いバイツェンビール(Germanwheat beer)でも3強でコーラですら3.5程度である。だから、そんなビールの体積の5倍などという炭酸ガスを多量に含んだビールは炭酸の刺激がやたらに強い美味しくないビールに変身してしまうに違いない。だから、ビール缶の中を高圧の炭酸ガスで満たすわけにはいかないのである。
 

各種ビールに含まれる炭酸ガスの量
スタイル適切なガスボリューム
British-style ales 1.5 - 2.0
Porter, stout1.7 - 2.3
Belgian ales 1.9 - 2.4
European lagers2.2 - 2.7
American ales & lagers2.2 - 2.7
Lambic 2.4 - 2.8
Fruit lambic3.0 - 4.5
German wheat beer 3.3 - 4.5

 そこで、キリン樽生サーバーの分解図をよく眺めてみると、炭酸ガスボンベを入れるガス容器の上部に「炭酸ガスの圧力を一定に抑える減圧用の部品」が取り付けられている。炭酸ガスボンベをこの減圧部に繋ぎ、圧力を一定に抑えた上で、ビール缶の中に炭酸ガスを注ぎ込んでいるのである。だから、ミニボンベ内の数十気圧の炭酸ガスが直接ビール缶の中に入り、ビール缶からビールが抽出部から急激に噴出したり、炭酸ガスがビール缶の中で多量にビールに溶け込むことを防いでいるわけだ。
 

樽生サーバーの減圧部と抽出部
(ボンベを入れる容器の上部が)減圧部
抽出部

 それでは、減圧部品により炭酸ガスはどの程度の圧力に調整されるのだろうか?ビール缶の中の炭酸ガスはどの程度の圧力になっているだろうか?それは「ビールが適切な炭酸ガスを含む程度の圧力」になるようにすることを考えれば良いだろう。冷えたビールが適度の炭酸ガスを含むためにはどんな圧力が必要になるかを考えれば、ビール缶の中の炭酸ガスの適切な圧力を知ることができる。

 そこで、下「温度と圧力が変化した際のビールの中に溶け込む炭酸ガスの量」を「適切なビールのガスボリュームである2.0-3.0付近、及び、ビールの適切な飲み頃温度4-12℃付近」を拡大したグラフを眺めてみよう。このグラフ中で、青い色で示した領域が適切なガスボリュームの範囲であり、赤い色で示した領域が炭酸ガスが抜けてしまった状態、もしくは、ガスを過剰に含んでいる状態である。このグラフを眺めると、ビールが飲み頃の温度6~8℃位で、ガスボリュームが2.5程度になるようにするためには、圧力を2.4(kg/cm^2 ≒ atm )程度にすれば良いことがわかる。その圧力にしておけば、ビールの温度が4℃~12℃位まで変動しても、ガスボリュームを2~3の範囲におさめることができる。
 

キリン樽生サーバー用の炭酸ガスボンベ
(容量10gと書かれている)

 また、内部の圧力が2.4気圧程度あれば、外気圧との差によりビールをビール缶からチューブを介して抽出部からグラスへ注ぐ圧力としても十分である。樽生サーバーの炭酸ガス減圧部は、ビール缶の中の圧力が(おそらく)2.4気圧(atm)程度になるように調整することで、よく冷えた温度のビールが適切な量の炭酸ガスを含むようにすることができるし、ちゃんとビール缶の中からビールをグラスに注ぐことができるようにしているのだろう。

 さて、ビール缶の中の炭酸ガスの圧力がわかれば、次に「1520mlのビールを飲み干すと、ミニボンベの中の炭酸ガスもしばらくしてちょうどなくなるキリン樽生ビールサーバーの秘密」つまり「炭酸ガスボンベの寿命」を考えてみることにしよう。まず、1520ミリリットル(ml)のビールを飲み干すのに必要な炭酸ガスの量はすぐわかる。最低限必要なのはビール缶の中(1520ミリリットルのビールと同体積とする)を2.4気圧(atm)程度の圧力で満たしきる量である。

  • ビール缶の中のビールを排出し、ビール缶の中を2.4気圧(atm)の炭酸ガスで満たす量   1520× 2.4 リットル(Nl)
もちろん、これだけでは不十分だ。ビールの美味しさの秘密は泡にもあるわけで、そんなクリーミーな泡を作るための炭酸ガスも必要だろう。ビールの泡の体積はほとんどが炭酸ガスの分だろうから、泡を作るためには「ビール缶の中(1520ミリリットルのビールに対して適切な量のビールの泡と同体積の炭酸ガス」が必要となるだろう。ビールと泡の比率が一番美味しいとされるのは7:3であるというから、つまりは
  • ビールの泡を作り出すのに必要な炭酸ガスの量   1520 × 3/7 ≒ 1520 ×0.4 リットル(Nl)
の炭酸ガスがさらに必要となるわけだ。

 ということは、「ビール缶の中のビールを排出するための炭酸ガス」と「ビールの泡を作り出すための炭酸ガス」の合計は

  • グラスに注ぐビールの量 × ( 2.4 (ビールに含まれる炭酸ガスの量) +0.4(グラスの上の泡の炭酸ガス) )
  •   ≒ グラスに注ぐビールの量 × 2.8
となり、1520ミリリットルのキリン樽生ビールの場合は1520×2.8≒4.3リットル(Nl)の炭酸ガスが必要になることになる。

 冒頭に書いたように、付属の炭酸ガスミニボンベの内容量は5リットル(Nl)なので、それは必要量4.3リットルに対して20%ほど多い量であることがわかる。そして、ビール缶二本分に使うには足らず、ビール缶の交換と共にガス缶も交換しなければならないことも理解できる。「真夏日」の夜に樽生サーバーでビールを飲みながら感心した、「交換用の1520ml缶に入った一番搾りを飲み干すと、交換用炭酸ガスのミニボンベもちょうど無くなる」仕組みは(おそらく)こんな感じになっているのだろう。

 いつの間にか、真夏日の日々も終わってしまい、日中でも時折は涼しさすら感じられるようになった。それでも、「キリン樽生サーバーの秘密」や「炭酸ガスのミニボンベの寿命」をふと思い出しながら、晩夏の夜に冷たいビールを飲んでみるのもきっと面白いはずだ。あるいは、何も考えずにビールを飲んでみても、それでも気持ちが良くなるに違いない。
 ガスが抜けたビールは不味いけれども、ガス量がほど良く調整されたビールを飲めば、きっと気持ちよく気分のガス抜きができる。樽生サーバーの炭酸ガスボンベはガスを抜くと寿命が短くなってしまう。けれど、ビールで気持ちのガス抜きをすればきっと寿命は長くなるに違いない。夏の終わりには、一日の終わりには、ビールを飲むのが気持ち良い。 (…発泡酒だけど)

2006-02-18[n年前へ]

クリアビッドCMOSセンサのヒミツ 

平林 純@「hirax.net」の科学と技術と男と女/Tech総研:クリアビッドCMOSセンサのヒミツ Tech総研ブログ平林 純@「hirax.net」の科学と技術と男と女に「クリアビッドCMOSセンサのヒミツ〜私たちの「色空間分解能」を確かめてみよう〜」を書きました。斜め配置CCD・CMOSの秘密 前編に書いたことの「続き」になります。今回の記事の補足などは、hirax.netの方にでも書いてみようと思っています。
 それはともかく、今回の記事中後半に出てくる「画像の違い」を見分けることができるかに挑戦してみると面白いのではないか、と思います。

2006-02-26[n年前へ]

白黒写真をカラー化するソフトウェアのヒミツ!? 

平林 純@「hirax.net」の科学と技術と男と女/Tech総研平林 純@「hirax.net」の科学と技術と男と女/Tech総研:白黒写真をカラー化するソフトウェアのヒミツ!? 腰痛気味で困っている今日この頃、Tech総研ブログ 平林 純@「hirax.net」の科学と技術と男と女に「白黒写真をカラー化するソフトウェアのヒミツ!?」を書きました。内容は、白黒写真を手軽に彩色できるソフト「Recolored」に関するエトセトラです。「クリアビッドCMOSセンサのヒミツ」と少し繋がる内容を書いてみました。この続きは、hirax.netの方で…また書く予定です。

「視覚の色空間分解能が低いこと」が作者たちの(当初の)モチベーションを作り出したのではないかと、私はちょっと想像してみたりするのです。

2006-11-08[n年前へ]

スペクトル処理で遊ぶためのMathematicaノートブック 

Title 色処理・スペクトル処理で遊ぶためのMathematicaノートブックを作ってみました(Mathematicaノートブック, PDF)。このノートブックはあくまで遊び用ですから、「できること」はとても限られています。けれど、Mathematica初級者が(Mathematicaの使い方を覚えながら)色処理・スペクトル処理を行おうとする時のスタート地点としてならば、少し役に立つかもしれません。例えば、plotSpector red なんてタイプすれば、右の画像中にあるようなカラフルなスペクトル・グラフが表示されたりします(右の例はシアンを表示したものですが)。Titleまた、rgb = fitSpector cyan, red, green, blue なんてタイプすれば、シアン色を(スペクトル分布を考慮した上で)RGBに分解できます。もちろん、fitSpector hogeColor, cyan, magenda, yellowなら、hogeColorをcyan,magenda,yellowというスペクトルで再構成できるわけです。あるいは、setcolor cyan ; {L, a, b} なんて入力すると、任意のスペクトルをLab色度座標を計算したりできる…という具合です。

 このノートブックの一つの特徴は、連続する「スペクトル」を(離散的なリスト)でなく「関数」として取り扱うところです。ですから、cyan467.34なんて入力すると、波長467.34nmでのシアンの光強度が出力されたりもします。そして、そんな関数主体の使い方をしてみることで(例えば plotSpector .5 D65# + .5 D50# & という風に)、「純関数(無名関数)」を使うことにも慣れてくるといった副次的な効果もあるかもしれません。



■Powered by yagm.net