1999-02-25[n年前へ]
■微小4次元計測をしてみたい
デジタルカメラ、実体顕微鏡、動画の三題話
最近はデジタルカメラ(以降、デジカメと呼ぶ)が大流行りである。実験の記録に使うと大変便利だ。ところで、実体顕微鏡の接眼部からデジカメで撮影するという話題が
の辺りにある。この撮影法の難しさは、デジカメの種類によって違う。例えば、FujiFilmのFinePix700では光軸合わせに結構苦労する。ところが、ソニーの「DigitalMavica(技術者向けのオプション(例えばオシロスコープ・フード)などもあって便利)」ではこの撮影方法はとても簡単である。「Mavica」のレンズを実体顕微鏡の接眼部に合わせるだけで、視野をうまく合わせることができる。といっても、実体顕微鏡にはCCDなどを接続してあることが多いため、単に実体顕微鏡の接眼部をデジカメで撮影するだけでは面白味が少ない。もちろん、高いCCDカメラの代りにメガピクセルのデジカメを使えるメリットは大きいとは思う。
しかし、実体顕微鏡(双眼式)で何が良いかといえば、立体に見えることである。しかし、CCDカメラの接続は一眼式になってしまう。これまで、一つの実体顕微鏡に2つのCCDを接続できるような実体顕微鏡は見たことがない。そこで、接眼部からデジカメ撮影をする方法なら、立体撮影をすることができるので、実体顕微鏡の長所を生かすことができる。
これがそのサンプルである。交差法と平行法の両方を示す。立体に見えるはずである。
それでは、3次元計測を行ってみる。まずは、マーキングをする。基板上とICチップ上にA,B,C,Dという4つのマーキングを行う。
奥行き方向(Z方向としておく)に違いがある場合には、左右の画像でX方向のずれが生じる。そのずれ量を計算してやれば、Z方向の計測を行うことができる。つまり3次元計測を行うことができる。
左 | X | Y | 右 | X | Y |
A | 124 | 33 | A | 133 | 35 |
B | 13 | 55 | B | 22 | 55 |
C | 136 | 167 | C | 144 | 167 |
D | 101 | 100 | D | 99 | 102 |
左右画像の(x,y)の差をとり視差を出す。すると、(A,B,C)とDの間で違いが有り、Z方向の距離が違うのがわかる。
左-右 | X | Y |
A | -9 | -2 |
B | -9 | 0 |
C | -8 | 0 |
D | 2 | -2 |
この結果から、(x,y,z)を描くと以下のようになる。x-y座標上にzの値を書いてある。Dのポイントのみがz方向に近いのがわかる。
もちろん、本来は光学系から係数などを導くのだが、今回は行っていない。大雑把な説明である。また、同じようなやり方で、3次元表面計測も行うことができる。
ソニーの「DigitalMavica」の素晴らしい所は光軸合わせが簡単なだけではない。動画をmpegファイルとして撮影することができる。というわけで、2台買えば実体顕微鏡の画面を立体動画として保存できる。それが微小四次元計測である。
残念ながら、今回は1台しか使えないので、動画サンプルを示すだけである。mpegファイルをgifに変換したものを以下に載せておく。TFT液晶の拡大画面である。映像の終わりで実体顕微鏡の接眼部からカメラを外しているのがわかると思う。
動画サンプル MPEG形式 507kB
動画サンプル GIF形式155kB (上を縮小したもの)
その他関連情報
1999-05-23[n年前へ]
■HooPoディスプレイの謎
夢の扉が開かれる
ビジネスショー'99に行った。そこで、面白いものを見かけたので紹介したいと思う。
まずは、NTTのブースである。下の写真では判りづらいだろうが、色々な画像と文字が立体的に(奥行き情報を持って)すばやく映し出されているのである。
映像が立体的になった瞬間は「まさかレンチキュラー方式?」などと考えてしまったが、
奥行きに2段階しかないことに気づくと(映像の変化が激しく、気づきにくかったのだ)、謎は解ける。一番置くに大きなディスプレイがあり、その前に半透明のシートがあり、そのシートに対して前方からプロジェクターで前景を映し出しているのである。なかなか面白そうなので、後でじっくり観ることにした。
次の面白いものは、以下である。HoroProディスプレイという名称である。
ディスプレイが透けているのがわかるだろうか?ITEM-16というのは後ろの壁である。 |
アオリの調整などはどうしているのだろうか?そういった機能を内蔵するゾーンプレートのようなものなのだろうか?これは実に面白い活用方法がありそうだ。
NTTもHoloProも簡単なタネを持つ科学おもちゃであり、見ているととても楽しい。どういったタネであるかを考えるのはミステリーを解くようで面白い。
.
.
.
さて、それでは席をちゃんと確保してNTTのブースを見てみることにしよう。こちらは、キーワードといい、演出といい、実に私好みだった。ラストなど感動してしまった位だ。
「夢の」扉が開かれる。 |
色々な映像が映し出され、カウントダウンが始まる。 |
始まるといきなり映像に奥行きが生まれる。 |
ディスプレイとスクリーンの中央が照らされ、そこに人がいたことがわかる。 |
輝きながら、スクリーンが揚がる。 |
この緞帳が揚がる瞬間というのは実に気持ちがいい。コンサートでも舞台でも緞帳というのは現実の世界と架空の世界の間の「扉」である。それを開けるということは、すなわち、架空(今回は夢か)の世界へ入っていくことに他ならない。
ここからメインのプレゼンが始まる |
プレゼンが終わり、スクリーンが下る。そして、キーワードが前後に映し出される。 |
周囲が明るくなり、これまで登場した人物達が |
登場人物の前後を縦横無尽にこれまで使われた映像、 |
これまで登場した人物達は、未だスクリーンの向こう、「夢の扉」の向こうにいるのである。
「夢の扉」を開く原動力、それは...と始まる長い台詞が続く。 |
もちろん、その瞬間にスクリーンがあがるわけだ。
スクリーンが揚がり、役者が並んでいる。 |
「扉」の向こうで演じられていた「夢」がすでにここにある、ということを端的に示しているのである。夢の世界はスクリーンの向こうにあるわけではない、夢の世界はもうここにある-「夢の扉」は開かれた-ことを強く示すものだ。
最後の「夢の扉を開く原動力、それは..」.の後につづく台詞も結構良かった。役者と製作者達に拍手をしたい。
1999-07-08[n年前へ]
■走査線の狭間
1/60秒の世界を目指せ
あぁ、今回は(今回も)めちゃくちゃマニアックな話である。トップページには「身近な疑問を調べる」、と書いてあるが、他の人にはぜんぜん身近ではないだろう。最近、妙に忙しいので、身近な疑問がおろそかにされているのだ。身近な疑問の解決は結構難しいのである。そのため小難しい話が続くのだ。困ったことだ。
さて、今回やったことを結論から言えば(*)、AVIファイルをフィールド毎に分解してBitmapファイルに落とすプログラムを作ったのだ。「このソフトはとても便利だ」と言ってくれる人がいたならば、感謝感激雨あられだ。とりあえず、私には欠かすのことのできないソフトである。なぜ、このソフトがそんなに便利なのかを、これから手短に(**)語りたい。
* 「結論から言えば」、とか、「要するに」という人は必ず結論を言わなかったり、全く要約されていない話をするのはなぜだろうか?
** 同じく、「手短に」ときたら、必ず話は長くなる。
一般的なTVで使われている信号はNTSCと呼ばれる。1秒あたり約30フレームからなり、1フレームは2フィールドにわけられる。というと、複雑に聞こえるが実はとても単純だ(***)。単に1フレームが奇数フィールドと偶数フィールドに分かれているだけである。フィールドというとわかりにくいので走査線と考えればわかりやすい、と思う。
*** 当然のごとく、単純ではない。
NTSCの信号を時系列で追うとこのような画像の集合になっている。例えば、こういう具合だ。
1フレーム目の奇数フィールド(走査線)
1フレーム目の偶数フィールド(走査線)
2フレーム目の奇数フィールド(走査線)
2フレーム目の偶数フィールド(走査線)
.
.
.
29フレーム目の奇数フィールド(走査線)
29フレーム目の偶数フィールド(走査線)
30フレーム目の奇数フィールド(走査線)
30フレーム目の偶数フィールド(走査線)
30フレームで約1秒であるから、1枚の画像(フレーム)は約1/30秒である。だから、普通のビデオカメラで撮影した画像は1/30分の1秒毎の画像を示しているのである。しかし、もっと高速度撮影したいと思うときがある。ウン百万出せば、1万分の1秒の撮影でも可能な高速度カメラが買えるが、個人ではとても買えない。また、そもそもやりたい用途向けの高速度撮影用のカメラが存在しない場合というのもままあるのだ。そういった場合には、時間軸に対しては1/30秒までの撮影にしか使うことはできない、と思えるだろう。
しかし、NTSCの信号もフィールド毎に分解すれば、1/30秒の半分、すなわち1/60秒毎の画像を示しているのである。たかだか2倍ではあるが、されど2倍である。1/30秒では見えていなくても、1/60秒では見える世界というのもあるのだ。
画像例を用いて説明しよう。左の1/30秒間の画像を奇数フィールドと偶数フィールドに分解したのが右の画像(a),(b)だ。(a),(b)を比べると、黒い矩形が左から右に移動しているのがわかるだろう。今回のソフトウェアはそういった計測には非常に便利なのだ。このソフトウェアを使えば、普通のビデオカメラの性能を2倍にすることができるのだ。スポーツをやる方などは自分のフォームをチェックするのに使うといいだろう(画像解析までしてフォームチェックはしないか、普通...)。これで、フォームチェックはプロ級だ。
1/30のままの例 | 1/60のフィールドに分解した例 |
1/30と1/60がたかだか2倍でも結構違うという良い例は、1/30秒のシャッタースピードではブレた写真になってしまう人でも、1/60秒なら大丈夫、とか、ゲームを作る際に1/60秒以内に人間からの入力に対して反応を返してやれば、プレーヤーはスムーズに感じるが、1/30秒ではダメだ、とかいう話がある。
というわけで(****)、AVIで記録された動画ファイルを1/60毎の画像に分解するプログラムが今回作成したものである。
奇数フィールドと偶数フィールドを分けることにより2枚の画像に分解し、それぞれの画像内で失われたフィールドを単純補間により復元することができる。奇数フィールドが先頭か、あるいは、偶数フィールドが先頭かは選ぶことができるし(奇数フィールドと偶数フィールドのどちらが先か選べるということでもわかるように、どちらが先であるか必ずしも決まっているわけではないらしい。そこらへんは、各映像機器によって変えなければならない。)、インターレースでなくノンインターレースの場合、つまり、単にAVIファイルの各画像を静止画におとすことだけもできる。
**** 「というわけで」は話を強引に次へつなげるときに使う。
このプログラムを使ったあとはScion ImagePCを使うのがお勧めだ。Macintoshの世界で一般的なNH-imageのWindows版である。今回のプログラムで作成した静止画群をスタック化して使うのがいいと思う。そうそう、Scion ImagePCに読む込むときには静止画を8bit(gray)画像へと前処理しておくことがお勧めだ。
1999-12-06[n年前へ]
■立体音感を考える
バーチャルサウンドソフトウェアを作ってみよう
立体感というものには何故か強く心惹かれるものがある。まして、それが人工的な立体感であるならば、なおさらである。それは、画像・映像であっても、音であっても同じだ。色覚なども同様なのだが、人間の感覚というものを人間自身の技術により再現できたりするのが、実に面白い。
何より、自分が実感できるというのが良い。結果を自分で感じることができるというのは、素晴らしいと思う。よくソフト技術者などで、「もう少し目に見えるものが作りたい」という人がいるが、それと同じである。
小・中学校などでも実感できる教材や授業というのがあれば素晴らしいと思う。最近のWEBを眺めていると、そういう先生方のグループも多いようだ。そういう先生は「えらいなぁ」とつくづく思う。今の学校の先生は、そういうことをすればするほど、仕事としては時間単価が下がってしまうのだろう。それでも、そういった先生方は、きっとそういうことは気にしてはいられないのだろう。ホントにエライ。
さて、立体感を実現するソフトであるが、そういった技術には色々なモノがある。音響の立体感の実現を目指す技術に関しても、古くから数多い技術がある。そういったものを追求しているWEBも多々あり、
「今日の必ずトクする一言(http://www.tomoya.com/)」の
- 山本式スーパーバイノーラルコンペンセーターのナゾ(その2、ソースを考える編)
- http://www.bekkoame.ne.jp/~jh6bha/higa9810.html#981013
- 山本式スーパーバイノーラルコンペンセーターのナゾ
- http://www.bekkoame.ne.jp/~jh6bha/higa9810.html#981008
- 山本式バーチャルサウンドシステムのナゾその2(原理解説編)
- http://www.bekkoame.ne.jp/~jh6bha/higa9804.html#980421
- 山本式バーチャルサウンドシステム(PATPEND.)のナゾ
- http://www.bekkoame.ne.jp/~jh6bha/higa9803.html#980307
また、そういったものを実現しようとする製品は昔から掃いて捨てるほどある。最近の製品では、
- ヤマハ、スピーカー間隔0でステレオ音場を実現するLSI
- http://www.watch.impress.co.jp/pc/docs/article/990122/yamaha.htm
- ヤマハ デジタルオーディオ用LSI『YSS901』
- http://www.yamaha.co.jp/news/99012101.html
私も出張などで新幹線などに乗っている際には、E-500などでヘッドホンで音楽を聴いていることが多い。そういう時には、先の「山本式スーパーバイノーラルコンペンセーター」などが欲しくなり、音の立体感などについて色々と考えてしまう。必要に迫られているせいか、立体音感については、私もとても興味を惹かれるのである。
というわけで、「できるかな?」でも立体音響について考えてみたいと思う。といっても、考えるだけでは面白くない。それに「ナントカの考え休むに至り」ともいう。私が考えるだけでは、何にもならないし、しょうがない。色々と実験をして遊んでみたい。
そのために、まずはいくつかの道具を作ってみることにした。
今回、作成するのは、山本式バーチャルサウンドシステムソフトウェア(名付けてYVSSS。略称が長いので、以降YVS3と称することにする。)である。先の「今日の必ずトクする一言(http://www.tomoya.com/)」の一連の話しに出てくるそれである。スピーカーマトリックスの程度を小さくしたものである。
バーチャルサウンドシステムソフトウェアというと仰々しいし、ものすごいソフトウェアに思えるかもしれないが、実はそんな大したモノではない。それどころか、実に簡単なモノである。実際には、Waveファイルを開いて、そのファイルの左チャンネル(L)、右チャンネル(R)に対して、
- R'= R - 1/3L
- L'= L - 1/3R
ここに、今回作成したソフトを置いておく。いつものことであるが、完成度はアルファ版以下である。
使い方を示しておく。まず、下が動作画面である。水平方向にスライダーがあるが、チャンネル同士の演算の係数を決めるものである。左端が0%であり、右端が100%である。
すなわち、スライダーが左端であれば、
- R'= R - 0 L = R
- L'= L- 0 R = L
- R'= R - L
- L'= L- R
Load_Convertボタンを押して、WAVファイルを選択し、変換することができる。その際、オリジナルのファイルは"*.org"という名前で保存される。
さて、このソフトを使って、
- 種ともこのアルバム「感傷」から「はい、チーズ!」
- THE POLICEのLive at the "Omni" Atlanta, Georgia During 1983 U.S.A Tourから"SoLonely"
試聴のやりかたは、Cd2wav32.exeを使い、CDからWAVファイルにする。そして、WaveMixPro(YVS3)を使って、バーチャルサウンドシステム構築する。そして、それをヘッドホーンで試聴するわけだ。適当にチャンネル同士の演算の係数を変化させ、聴いてみた。果たして、立体感は増しているか?
さて、試聴した結果であるが、「うーん。」という感じだ。
係数を大きくすると、まるで「カラオケ製造器」である。ボーカルが消えるだけである。しかも、聴衆が頭の真ん中に居座っているような感じである。つまり、立体感がむしろなくなってしまっている。「何故、オマエらはオレの頭の真ん中で拍手をするのだ」、と言いたくなる。頭が変になりそうである。
かといって、小さいとよく違いがわからない。困ったものである。
さてさて、まだまだ第一回目ではあるが、前途多難の気配であるのが心配なところだ。
2000-03-19[n年前へ]
■一家に一台、分光器
ハサミとテープで「できるかな?」
いきなりであるが、分光器を作りたい。光を波長別に分ける機器である「分光器」である。とある実験をするために、分光器が必要なのである。その「とある実験」の影には、大きな野望があるのだが、まだ明らかにする訳にはいかない。とりあえず、色の話題を考えるときに分光器があると便利だから、という理由にしておきたい。
どうやって分光器を作るか考えてみる。普通であれば、グレーティング(回折格子)やプリズムといったものを使うことになるだろう。家の中を探してみれば、プリズムなどもあるはずなのだが、WEBで情報を探してみると面白い情報があった。
- CDを利用した分光器の製作
- ( http://www.sunfield.ne.jp/~oshima/omosiro/spec.html )
- 遮光フィルムを用いた分光器の製作(その1)
- ( http://www.asahi-net.or.jp/~DJ9K-SMZ/goods/spectre/spectre.html )
次に示すのが、HIRAX一型分光器である。ハンディ・超軽量の優れものだ。テープとハサミと去年のカレンダーを駆使し、フリーハンドで作成した、製作時間20分の大作である。どうも私の仕事はテープとハサミを駆使することが多い。それは、ハードでもソフトでも、どちらでも同じことである。出来の悪いノッポさんである。
左下がスリット部になっている。中央上の折れ曲がっている部分にグレーティングが配置している。次の写真を見るとグレーティングがあるのが判ると思う。HIRAX一型分光器の内部は散乱光を防止するために、黒く塗ってある。しかし、下の写真を見れば判るように、グレーティングの周りの片側は塗り忘れてしまった。まるで、「耳なし保一」である。
こちらの開口部から目で覗くなり、デジカメで撮影するなりするのだ。そうすれば、スペクトルが確認できる、というわけである。
例を示してみたい。グレーティングが曲がっているせいで、スペクトルが歪んでいるし、スリットが結構太いし、サイズのせいもあってスペクトルの分解能はそれほど高くない。しかし、結構きれいな映像を得ることができる。まずは、太陽光のスペクトルを見てみる。
これはデジカメで撮影したものである。スリットが太いので確認しづらいのだが、太陽光のフラウンホーファー線(FraunhoferLine)の一つHβ吸収線が486nm(ここでは水色の中央部)辺りに見えるような気がしないだろうか? いずれ、スリット幅を小さくして、もう少し精度の高い実験をしてみる予定である。
さて、次の例は「自宅の蛍光灯のスペクトル」である。
- 黄色、橙色 579、577nm
- 黄緑色 546 nm
- 水色 436 nm
- 紫色 408、405 nm
目で覗いたり、デジカメで撮影したりするのも面倒なので、可視・赤外領域に感度を持つCCDボードを秋月で買ってきた。次回、このCCDボードを取り付けて見る予定だ。そして、定量化をしてみたいのである。そして、ある野望のためにせっせと実験を続けていく予定である。