hirax.net::Keywords::「スペクトログラム」のブログ



2000-01-08[n年前へ]

着メロの音響工学 

この着信音は誰のだ!? 立体音感その3


 街中で携帯電話の着信音が鳴ると、周辺の人が一斉に自分のポケットを探る光景というのはよく見掛ける。それは、まるで「クイズ・ドレミファドン」のようである。そう「超・イントロクイズ」そのものなのだ。「このイントロはオレのか!?それとも!?」と皆が考えている瞬間である。
 着メロのイントロが始まるや否や、腰の携帯電話に手をやる様子は「おまえは荒野のガンマンか!」とツッコみたくなる程である。

 特に、私の勤務先などでは全員が同じPHSを持ち歩いているせいか、着信音が聞こえ始めると、みな自分のポケットを探り始める。もちろん、そのPHSの着信音は数種類ある。しかし、1500人程度の従業員がいるわけだから、1500人/ 数種類だけ同じ着信音があるわけだ。仮に15種類あるとしても、

1500(人) / 15(種類数) = 100(人/種類)
つまり、自分と全く同じ着信音のPHSを持つ人が100人もいるのだ。世の中には「自分と同じ顔の人が七人いる」というが、職場に同じ着信音の人が100人もいるのである。これでは、着信音が鳴ると同時に多くの人がポケットを探るのも自然だろう。

 もちろん、この解決策として、「着信音でなくてバイブレーターを使う」というものがあるわけだが、何故かその解決策は許されないらしい。不思議である。

 さて、そもそも、何故自分の着信音を区別できないのだろうか? まず、その辺りから考えてみることにする。
 着信音が鳴ったときに、「自分の着信音かどうか判断するための基準」は二つあるだろう。それは、

  1. 着信音の種類
  2. 着信音が鳴っている位置
の二つである。着信音が人それぞれ固有のものであるとしたら、着信音の種類を聞けば、誰の着信音か判断できる。また、仮に着信音がみな同じであっても、着信音が鳴っている位置を識別できれば、それでも誰の着信音であるか判断できる。自分の携帯電話の位置は、それぞれ把握しているのが自然である。だから、
着信音の鳴っている位置 = 自分の携帯電話の位置
が成立するかどうか即座に判断できれば、着信音が同じでも「自分の着信音であるか」の判断が可能ということだ。

  つまりは、「携帯電話の着信音という音源の定位」という問題を考えれば良いことになる。もし、「着信音の定位」が判れば、自分の携帯電話の着信音か他の人の着信音かどうかなんてことは考えなくて済むのだ。そう、今回は「立体音感」シリーズその3だったのである。

 それでは、一体「着信音がどこで鳴っているのか、すなわち、着信音の定位」が判るためには何が必要なのだろうか?
 

前回、

で「音の立体感に関する因子」について
  • 音像定位の因子
    • 両耳差因子 (音響信号)
      • 音の強さ(振幅)の差
      • 位相の差
    • 周波数スペクトル因子
の中の両耳差因子の内の「音の強さ(振幅)の差」について考えた。今回は、「着信音の定位」を考えるにあたり、「周波数スペクトル因子」に注目してみることにする。

 周波数スペクトル因子というのは、例えば、

の中の記述
 指を前方で鳴らしてみて下さい。 そしてすこしずつ手を頭の側方に、手と頭の距離を変えないようにして、移動してみて下さい。 音量がわずかに大きくなったこととある特定の中域および広域の音がより強調されることに気が付かれるでしょう。 この実験では、指を鳴らす動作は一定の音量と周波数を発生する音源として用いられたわけです。 耳は同一の音源が前方から来る場合と、側方から来る場合で全く違う音と聞き分け、頭脳にそれを登録します。 側方の音は若干大きく、また耳たぶのせいで高い周波数で聞こえます。
にあるようなものである。
 音波が人間の頭部を通過してくる間に音波の周波数分布が変化し、その変化具合で音波がやってきた方向を知ることができるというものだ(多分)。もちろん、位相分布も変化するだろうが、ここでは周波数分布しか考えない。

 こういう音像定位の因子における「周波数スペクトル因子」を考える時に、もし音源の周波数スペクトルがごく狭いものだったらどうだろうか?つまり、単一の周波数しか含まない音源だったらどうだろうか?周波数スペクトルが変化するといっても、単一のスペクトルしか含んでいないのだから、振幅が変化する効果しかない。周波数スペクトルの分布は何ら変化しない。
 ということは、「音像定位の因子における周波数スペクトル因子」が上手く作用しないことになってしまう。(もちろん、実際には非線形な効果が存在するだろうから、多少は周波数スペクトルも変化するとは思うが。)

 これと全く同じことはまたしても「物理の散歩道」で触れられている。ロゲルギスト著の岩波新書「第四物理の散歩道」の「不規則なものの効用 三節」である。純音より不規則な音の方が「立体感」を得られるだろう、と書いている。

 今回、「携帯電話の着信音の定位」を「着信音のスペクトル分布」という観点から調べてみることにする。携帯電話の着信音がどのような波形であるか、どのような周波数分布を持っているかを調べるのである。果たして、携帯電話の着信音の周波数分布はどうなっているのだろうか?(部品点数を考えれば、ほぼSin波か矩形波なのが当然だろうが...)

 まずは手持ちの機種で着信音の波形とスペクトルを見てみることにした。使った機種を以下に示す。
 

使用した Hitachi C201H

 それでは、着信音No4と着メロ「この木何の木」の波形とスペクトログラムを次に示す。それぞれのグラフ中で上は「時間vs周波数分布」を示すスペクトログラムであり、下は「時間vs強度」の波形グラフである。

 まずこれが、着信音No.4の波形とスペクトログラムであり、
 

No.4の波形とスペクトログラム

こちらが、「この木何の木」の波形とスペクトログラムだ。
 

「この木何の木」の波形とスペクトログラム

 どちらも周波数分布はそれほどブロードではない。すると、「音像定位の因子における周波数スペクトル因子」を用いた「立体音感」がうまく働かないかもしれない。ただし、着信音No.4に関しては時間的に変化しないが、着メロ「この木何の木」に関しては、当然だが時間的に変化していく。

 この違いが果たして、「着信音の音像の定位」の判断を左右するものか、自分の耳で実験することにした。着信音No.4と着メロ「この木何の木」を鳴らした時に、どこから鳴っているように聞こえるか判断してみるのだ。

 目をつぶり頭の周囲で着信音を鳴らし、その定位を判断してみた。すると、色々な着信音を聞いてみたがいずれも定位の判断がしづらかった。特に頭の前後の判断がしづらい。それは、着信音No.4と着メロ「この木何の木」でも同様であった。やはり、純音に近いと「音像定位の因子における周波数スペクトル因子」が働きづらいのかもしれない。

 そして、着信音No.4と着メロ「この木何の木」だが、むしろ着信音No.4の方が判断をしやすかった。メロディだと音が変わるときに定位が変わるかのような感覚を受けた。そのため、判断をしにくかった。もちろん、これは私だけの感覚かもしれない。その辺りは被験者を増やして実験をしてみたい(再実験をする日が来るかどうかは大いに疑問であるが)。
 また、もしかしたら着信音No.4の方が矩形波に近く、純音でないのが良かったのかもしれない。もしかしたら、の話だけれど。

 もし、今回使った音を聞いてみたい人がいるならば、

これを聞いてみてもらいたい。ただし、サイズがでかいので要注意だ。あとバックグラウンドがうるさいのはハードディスクとファンの回転音である。困ったものだ。

 最近多い「同時発声数が多い着メロ機能」というのも、使って実験すると面白そうだ。しかも、音が分厚いヤツがあると、案外良いモノかもしれないな、とうらやましく思ったりするのである。そして、着信音スピーカーがプアァで歪んでいる機種なんかが、色々な周波数成分を含んでいて、実は「着信音の定位」に関しては良かったりするのかもしれない、と考えたりする。しかし、こちらはチットモうらやましくないのであった。
 

2000-02-19[n年前へ]

携帯電話の同時性? 

競馬の写真判定とパノラマ写真 その後

 先日

を書いてから面白いメールを頂いた。その一部を抜粋すると、
 小生は超音波を利用した新しい流体場測定を行っていますが、この方法で得られるDataは空間1次元時間1次元の2次元データです。従って得られるのは、このページにあったような画像が直接得られるわけです。

 この方法といくつかの結果を発表してから、あちこちからコンタクトがありましたが、その中の一つが、NYのSirovichという高名な流体力学者からの手紙でした。彼はいわゆるSnapShotを、逆に小生のデータから構築できないか、というのです。

 今このWebでされたことの逆をしたいというわけです。流れの空間構造を解析するために使いたいのです。残念ながらこれは、以下に少々説明するように、原理的に無理な話で断らざるをえませんでした。

 つまり、時間軸に速度をかけて空間軸に変換できればよいのですが、流体場はそれ自身が速度分布を持っていますから、一体何を使えば良いのかが定まらない。

 電磁波の場合には光速が一定ですから、時間情報から空間情報を得ることができますが、古典流体力学では不可能なのです。工学的には平均流速を使って、時間-空間の変換をしますが、それはインチキとまでは言わないまでも、便宜的なも
のでしかありません。

 このWEBの中での例では、馬?の速度のみであとは静止しているので、可能でし
ょう。

とある。

 「馬?」という箇所に、私との意見の相違があるようだ。私が明らかに「馬」であると言い張っているものに疑問を持たれているような気がするのであるが、今回そこは気にしないでおく。

 なるほど、音波や電磁波などを使って計測を行い、得られた

  • 空間(あるいは量)-時間
のグラフから、音波や電磁波の速度を用いて
  • 空間(あるいは量)-空間
のデータを再構成する計測というのは多い。例えば、
  • 海の中の魚を探知する「魚群探知機」
  • 気象状況を計測する「気象レーダー」
  • 固体の中の電荷分布を計測する「電荷分布測定装置」
などもそうである。いずれも、音波や電磁波が計測される時間のズレから、音波や電磁波の速度を用いて、空間位置に変換して解析を行うものである。

「魚群探知機」は超音波を水中に発信して、その反射波が刻々と帰ってくる様子から、(超音波の速度を用いて、空間位置に変換した後に)障害物(ここでは魚群)の様子を計測するものである。「気象レーダー」も電波を使って同様に雲の分布などを測定する。
「電荷分布測定装置」の場合は、(例えば外部電界を印加し)電荷を持つ個所を振動させてやり、その振動がセンサー部に刻々と伝わってくる様子から(あぁ、なんて大雑把な説明なんだ)、(固体中の弾性波の速度を用いて、空間位置に変換した後に)固体の中にどのように電荷分布が存在しているかを計測するものである。

と、文章だけでは何なので、WEB上から、それらの計測器を用いた場合の計測例を示してみる。

 下が魚群探知機である。リンク先は

である。
魚群探知機
リンク先はhttp://www.taiyomusen.co.jp/gyogun.html

 また、この下は空間電荷測定装置である。これなども、とても面白いものだ。リンク先は

である。
空間電荷測定装置の計測結果
リンク先はhttp://www.crl.go.jp/ys/ys221/charge/PEA_3D.html

さて、こういうことを、調べてみるだけではしょうがない。自分でもそういう計測をしてみたい。
そこで、次のような実験をしてみようとした。

  1. 部屋の中に複数の「音の発信源」を配置する。
  2. 複数の「音の発信源」から同時に音を発する。
  3. それをPCで収録する。
  4. 音声が「音の発信源」からPCに到達するまでの時間を解析する
  5. 複数の「音の発信源」の位置を計測する。
 しかし、複数の「音の発信源」で同時に音を発するにはどうしたら良いだろうか?電子ブザーなどを複数制作して、部屋の中に配置しようかとも考えたが、それも少し面倒である。

 そこで、安易にも時報を使おうかと考えてしまった。しかも、数があって手軽ということで、携帯電話を使おうとしたのである。

 しかし、複数の携帯電話を集めて、117に電話して時報を同時に聞いてみると、とても同時どころではない。てんでばらばらなのである。電話のスピーカーから流れてくる時報のタイミングには結構ズレがあるのである。

 携帯電話の間には結構同時性がないのだ。また、固定電話とも比較したが、固定電話よりも時報が速いものもあれば、遅いものもあった。

 そこで、複数の携帯電話を聞き比べた結果を以下に示してみたい。この写真中で左の携帯電話ほど時報が先に流れており、右になるほど時報が遅れているのである。一番早い左と、一番遅い右では一秒弱の違いがあった。

左の携帯電話ほど時報が先に流れており、右になるほど時報が遅れている

 また、参考までに、家の固定電話と携帯電話の時報を一緒に聞いたサウンドファイルを示しておく。

この携帯電話は先に示した画像の一番左である。つまり、先の携帯電話群では一番時報が早かったものなのである。しかし、家の電話よりは一秒弱遅かった。ということは、家の固定電話と先の一番遅い携帯電話では時報の時間にして2秒弱の違いがあることになる。

 そして、「家の固定電話と携帯電話の時報を一緒に聞いた音の変化」をスペクトログラムにしたものを以下に示す。

「家の固定電話と携帯電話の時報を一緒に聞いた音の変化」のスペクトログラム

水平軸が時間軸であり、時間は左から右へ流れている。また、縦軸は音の周波数を示している。ここでは、「1」で示したのが家の固定電話の時報であり、少し遅れて「2」の携帯電話の時報が聞こえているのが見てとれる。

 よく時報を確認することはあるが(実は私はほとんどないのだが...)、携帯電話・PHSで時報を聞く限り、秒の精度はそれほどないようである。また、勤務先の固定電話は先の携帯電話群と比べても遅い方であった。それは少し意外な結果であった。

 今回調べた「携帯電話の同時性のなさは」は常識なのかもしれないが、電話の時報で時計を合わせるのはあまり精度が出ないやり方であることがわかっただけでもよしとしよう(別に実験を途中で投げ出した言い訳ではないけれど)。

 今度、TV(衛星TVなども遅延時間を考慮した時報の放送を行っていると聞くし)やラジオを用いて当初計画していた実験を行おうと思う。その際には、時報がPCに到達する時間のズレで「音の発信源」までの距離を計測し、左右のマイクでの違いを計測することにより、「立体音感シリーズ」のように「音の方向」を得てみたい。

 というわけで、話が「立体音感シリーズ」に繋がったところで、今回は終わりにしようと思う。

2000-03-05[n年前へ]

私の日本語練習帳 

アメンボ赤いなアイウエオ

 もうすぐ、4月である。4月といえば、新学期だ。といっても、私は別に学生ではないので、新学期といっても特に何があるわけではない。別に新しい授業が始まるわけではないのである。しかし、私は何故かこの時期になると「英会話」を勉強したくなるのである。

 去年の初めにも英語学習熱に襲われ、NHKのラジオ講座を通勤途中やることにしてみた。しかし、いつものように二ヶ月だけで挫折してしまった。そういうわけで、NHKラジオ「英会話」講座の毎年4月分のテキストが私の家には沢山ある。
 それだけでなくて、この時期には「一週間でわかる英会話(仮名)」というような本も買い込んでしまう。しかし、これもまた買うだけで終わってしまっていたのだ。どうも、私の興味が散漫であることも理由の一つだろう。湯川秀樹は

 「今日はあれをやり、明日はこれ、というように、あまり気が散ると、結局どれもものにならないですね。」
という非常に的確なことを言っているらしいが、まさにその通りである。話題が飛びまくりの「できるかな?」には実に痛い指摘である。しかし、糸川英夫は
 「自分にできること」よりも「世の中が求めていること」に挑戦し続けた方が人生も楽しい。
言っているらしいし、気にしないでおく(進歩無し)。

 私はそういう生活が10年近く続いている。そんなわけで、英語のテキストは増えたが、英語能力は減る一方だ。いやまてよ、ということは

  • 一人の人が持つNHKラジオ「英会話」講座の4月分テキストの冊数
  • 一人の人が持つ英会話能力
は反比例するのかもしれない。その仮説を適用するならば、
  • 今年のNHKラジオ「英会話」講座の4月分テキストを買わなければ、私の英語能力はアップする
という推論が可能である。逆に言えば、今年もまたNHKラジオ「英会話」講座の4月分テキストを買うと、ますます英語能力が低下してしまう、ということだ。私の英語能力が低下したのは、英語のテキストを買いすぎたせいで、もしかしたら、英語のテキストを全部捨てれば英語能力がアップするかもしれない。

 いや、こんなワケのわからない仮説を論じている場合ではない。これは、非常にマズイ。今年こそ、三日坊主は止めなければならない。新しいミレニアムが訪れたことでもあるし、バージョンアップした私(仮に私2000とでも名付けておこう)になるためにも、今回こそ英会話の勉強をしてみたいと思う。

 そこで、発売されてすぐ買ったは良いが、そのまま本棚で眠っていた

  • BLUE BACKS 英語スピーキング科学的上達法 山田・足立・ATR人間情報通信研究所
で遊んでみることにした。この本は
  • BLUE BACKS 英語リスニング科学的上達法 山田・足立・ATR人間情報通信研究所
の続編である。もちろん、私は両者とも買っただけで「積ん読(つんどく)」であった。いや、ホントは読んだのだけれど…

 それでは、今年の勉強を始めてみることにしたい。この本の主な内容は

  • 英語における発音を科学的に分析(主にフォルマント、スペクトログラム)する。
という感じである。

 これまで、「できるかな?」では

といった感じで音のスペクトログラムはよく登場している。なので、きっと感覚的に判りやすいはずだ(少なくとも理屈としては…)。

 しかし、いきなり私に英語はキツイ。まずは日本語の練習から始めることにした。日本語の母音の発音を練習するのである。そうすれば、自分自身の日本語を再確認できるし、この本の信頼性もチェックできる。「フォルマントで音声を判断する」というのがどの程度使えるものであるかを、私の日本語でチェックすることができるのである。何しろ、変な発音かもしれないが、一応私は日本語のネイティブであるからだ。

 それでは、「英語スピーキング科学的上達法」に付属のソフトで私のフォルマントを調べてみる。これが私の「あいうえお」のスペクトログラムとフォルマントである。
 

私の「あいうえお」のスペクトログラムとフォルマント

縦軸=周波数, 横軸=時間

 ここで、色丸で示してあるのが

  • 赤 = 第1フォルマント ( F1 )
  • 青 = 第2フォルマント ( F2 )
  • 緑 = 第3フォルマント ( F3 )
である。簡単に言えば、周波数のピークを低い方から番号付けしたものである。

 それでは、私の「あいうえお」をF1-F2空間にマッピングしたものを次に示す。これも、「英語スピーキング科学的上達法」に付属のソフトによるモノであり、標準的な男性の「あいうえお」の分布が示されている。そして、赤丸で示してあるのが私の「あいうえお」である。
 そして、F1-F2空間における英語の母音分布の上に私の「あいうえお」を重ねたものも示す。
 

F1-F2空間における私の「あいうえお」
横軸 = F1(Hz)、縦軸 = F2(Hz)





私の「あいうえお」を
英語の母音に重ねてみた図

 こうフォルマント分析をしてみると、私の「い」「う」「え」は標準的な分布の中に入っていることがわかる。しかし、「あ」「お」はそうではない。
むしろ、私は発音は英語の母音でいうところの

  • 「あ」 = 
  • 「お」 = 
という感じである。まぁ、
  • 私の発音の精度の問題 = 私の発音がヘン?
  • 測定・解析の精度の問題
かはさておき、精度はこんなものなのだろう。結構、ちゃんと判断できるものだなぁ、というのがこの解析に対して私の受けた印象である。こういう音声解析というのも実に面白そうな分野である。

 さて、最初のうちはこの本付属のソフトを使って遊んでいくことになると思う。しかし、いつか自作のソフトウェアを作成し、F1-F2-F3空間での「あいうえお」の可視化でもしてみたい。言葉の可視化、さらには言霊の可視化をしていく予定である。(あれっ、そう言えば英会話の勉強はどこへ…)
 

今日はあれをやり、明日はこれ、というように、あまり気が散ると、結局どれもものにならないですね。
By 湯川秀樹

2000-03-12[n年前へ]

元気な私とカゼひく私 

ガラガラ声の秘密


 のどが痛いし、微熱がある。どうやら、扁桃腺が腫れているらしい。「あー」と言おうとすると、「あ”ー」という声になってしまう。まさにガラガラ声である。

 ところで、ガラガラ声というのは一体どういう声なのだろう。もちろん、私の今の「あ”ー」という声はガラガラ声なのはわかる。しかし、このガラガラ声の特性をちゃんと定量化すべきだろう、と思うのである。まずは可能な限り、考えたり定量化したりしなければならないだろう。「感覚的なもの」というのは、そういうことをした後に持ち出すべきである。(考えること無しに)感覚的に判ったつもりになっているのは、何も感じていないのと同じである。それは、「想像力の欠如」に至ってしまうと思う。そして、想像力の欠如は「その人の地平線」を狭く(狭いという表現はおかしいようにも思うが)してしまう。何かワケの分からない文章だと感じるようであれば、それは私の頭が熱でふらふらになっているせいである。

 さて、

で私の「アイウエオ」の声についての解析を行った。今回も、同じように私の「アイウエオ」の声について調べてみたいと思う。そうすれば、過去の「元気な私」と現在の「カゼひく私」の声の違いがわかるかもしれない。そして、ガラガラ声とは一体何なのか?ということの手がかりが掴めるかもしれない。

 まずは、前回と同じように - F1-F2空間における私の「アイウエオ」 - を調べてみる。カゼをひいてガラガラ声になることで、私の「アイウエオ」のフォルマントはどう変化しただろうか?次の図がF1-F2空間における「元気な私のアイウエオ()と扁桃腺が腫れている私のアイウエオ()」を示したものである。
 

F1-F2空間における私の「アイウエオ」
元気な私のアイウエオ()と扁桃腺が腫れている私のアイウエオ()
横軸 = F1(Hz)、縦軸 = F2(Hz)

 面白いことに、前回標準的な分布から外れていた私の「ア、オ」が今回は標準分布の中に収まっている。ガラガラ声になることで、私はやっと標準的な「アイウエオ」になるようである。何故だか、よくわからないが、面白い。まぁ、きっとフォルマント判断の際のピーク検出精度の問題だとは思うのであるが、不思議な結果である。

 それでは、この「アイウエオ」の変化は一体どのようなものだろうか?音声波形を見てみることにする。それが次に示す図である。

 まずは、「あ」の波形である。
 

元気な私のアイウエオ(上)と扁桃腺が腫れている私のアイウエオ(下)
「あ」の波形編

元気な私

扁桃腺が腫れている私

 元気な私の「あ」が割に単純な正弦波に近い。ただし、完全に上下対称な正弦波ではなくて、上に凸な部分の方が若干立ち上がりが速い波形のように見える。そして、割に綺麗に同じ波形が繰り返されている。
 それに対して、扁桃腺が腫れている私の「あ」はスパイクノイズの入っている波形になってしまっている。こちらもスパイクノイズの入り方は割に同じ繰り返しである。

 また、元気な頃の私の「あ」がF1-F2空間における標準的な「あ」分布と離れていたのは、F2が弱いせいではないかという予想ができるのではないだろうか?本来、上下の立ち上がりが異なるのが普通であるが、私の「あ」は上下が比較的同じであり、それでフォルマント判断の際のピーク検出精度が低下していたのではないか、という考えである。
 それに対して、扁桃腺が腫れている私の「あ」は上下の立ち上がりがかなり異なり、周波数ピーク検出が容易であったのではないか、と私は考えるのである。

 さて、次は「い」である。
 

元気な私のアイウエオ(上)と扁桃腺が腫れている私のアイウエオ(下)
「い」の波形編

元気な私

扁桃腺が腫れている私

 これもやはり、基本的には同じ波形であることはわかる。しかし、元気な時には上に尖っている部分が、扁桃腺が腫れている私の「い」ではまるで部分的に上下逆転しているかのようになってしまっている。まるで、周波数毎の位相特性が異なっているアンプやスピーカーのようである。

 次が「う」である。ここまでくると、同じ「う」に聞こえるのが不思議なくらいである。
 

元気な私のアイウエオ(上)と扁桃腺が腫れている私のアイウエオ(下)
「う」の波形編

元気な私

扁桃腺が腫れている私

 見た目には、完全に別物の波形に見えてしまう。しかし、フォルマント上は「元気な私」と「扁桃腺が腫れている私」でほぼ同じ(F1-F2空間における私の「アイウエオ」を参照)であることを考えると、

  • 各周波数の位相がずれている
  • 高周波が重畳されている
という二つの効果により、見た目が違ってしまったのだろう。

 次の「え」も「う」と同じ傾向である。フォルマント上は同じというのが、目で見る限りはよくわからない。いや、もしかしたら見慣れたらわかるようになるのかもしれないが、今の私の心の目ではよくわからないのである。
 

元気な私のアイウエオ(上)と扁桃腺が腫れている私のアイウエオ(下)
「え」の波形編

元気な私

扁桃腺が腫れている私
元気な私

 最後の、「お」はもう何が何だかわからない。しいて言うならば、元気な私の「お」は高周波が極めて多いが、扁桃腺が腫れている私の「お」は高周波はあまりない。きっと、扁桃腺が腫れている私のノドの応答特性が低下しているせいだろう。しかし、これまでのスパイクノイズが増えている事実とどう繋がるかは、難しいところである。うーん、違うかもしれない…
 

元気な私のアイウエオ(上)と扁桃腺が腫れている私のアイウエオ(下)
「お」の波形編

元気な私

扁桃腺が腫れている私

 ここまでは音声波形を見てきたが、最後に周波数空間での違いを示してみる。元気な私のアイウエオに比べて、扁桃腺が腫れている私のアイウエオは割に高周波が増えていることがわかる。やはり、先の「お」の考察は違っているのかもしれない。
 

元気な私のアイウエオ(右)と扁桃腺が腫れている私のアイウエオ(右)
スペクトログラム編
元気な私のアイウエオ
扁桃腺が腫れている私のアイウエオ

 扁桃腺が腫れている私の声の周波数が高い辺りにいくつも見えるピークは私の「のどの痛みの証し」である。あ”ー、しんどい。いや、ホントにしんどいのである。

 さて、私は鈴が鳴るような綺麗な声がとても好きなのである。いつか、そういう声の秘密について調べてみたい、と思うのであった。また、色々な歌手の声のスペクトログラムについても調べてみたい、と思う。
 

2000-04-22[n年前へ]

怪しいレーダー・マン 

コウモリの発する音を聴け

 最近、帰りが遅い日が続いていた。しかし、今日は7時過ぎには家へ帰ってきた。4月も中程になると、この時間でも薄暗いほどに、日が長くなってきた。さて、駐車場で車を止めて空を眺めていると、蝶々のようなものがさかんに近所を飛び回っている。あれ、もう蝶々が飛び回る季節だったかな、それにこんな時間に蝶々って飛び回るのかな、それともこいつらは蛾かな、などとボンヤリ考えながら眺めていた。すると、それは蝶々でも蛾でもなく、コウモリだと教えられた。

 それを聞いた瞬間、当然私は家の中に駆け込み、そして秘密道具を手にして戻ってきた。もちろん、その秘密道具とはこれである。

の時に手に入れた超音波の音波を可聴域に変換する「バットディテクター」である。
 
釜利谷東ミックスシーズ バットディテクター

 こいつを使えば、コウモリが発する超音波を自分の耳で聞くことができる。イヤホンを耳に差し、コウモリに超音波マイクを向けると、聞こえる聞こえる。コウモリの発する超音波が聞こえる。「コッコッコッコッ…」というような音が聞こえるのである。

 「コッコッコッコッ…」という音がどんどん大きくなってくるとき、すなわちコウモリが近づいてくる時は恐怖すら感じる。外が暗くてよく見えないために、なおさら怖いのである。目の前にいきなりコウモリが突然現れたらどうしようかと思うと、トイレへ走り込みたくなる。

 さて、録音してみたコウモリの声をここにおいておく。とりあえずは、WAVファイルとMP3ファイルである。

 この声を可視化してみたものが次の画面である。音声波形とスペクトログラムである。パルス上の「コッコッコッコッ…」という音が連続的に繰り返されているのがわかる。
 
コウモリの発する音を可視化したもの

 さて、コウモリの発する音を録音している内に真っ暗になってしまった。しかし、一応コウモリの写真も撮影しておきたい。

 普通であれば、真っ暗な中で被写体(コウモリ)がどこにいるかわからないのであるから、撮影は結構難しいだろう。しかし、私には「バットディテクター」がある。耳にイヤホンを差し、超音波マイクを空に向ければ、例え真っ暗でもコウモリがどこを飛んでいるかはわかるのだ。超音波によるレーダーが私の味方なのである。カッコイイ言い方をすれば、私は超能力を持つレーダー・マンなのである(あまり格好良くない気もするが…)。

 そういうわけで、「バットディテクター」を頼りに「真っ暗な中を飛び回るコウモリ」をデジカメで撮影してみた。残念ながらピントがなかなか合わないのが難点であるが、とりあえず撮影してみた。それが、次の写真である。
 

真っ暗な中を飛び回るコウモリ

 この写真を撮るために、私は真っ暗な中でデジカメのシャッターを押しまくった。当然、真っ暗闇の中でフラッシュだけが光り続けたわけである。考えてみれば、怪しさバツグンである。耳にイヤホンをつけて、変な器具(実は「バットディテクター」)を空に向けて、延々とフラッシュを光らせまくるヤツ、それが私である。これを見た誰かが警察に通報するのではないかと、と真剣に心配になった程である。いや、もちろんパトカーがもし来たとしても、その音も素早くキャッチできるハズである。しかし、自宅の前では逃げようがない。

 作業が終了した今は、ただ、近所で悪い評判がたたないことをただ祈るのみである。
 



■Powered by yagm.net