hirax.net::Keywords::「代数」のブログ



1999-02-28[n年前へ]

分数階微分に基づく画像特性を考えてみたい 

同じ年齢でも大違い

前回、分数階微分の謎 - 線形代数、分数階微分、シュレディンガー方程式の三題話- で分数階微分について調べた。例えば、0.7階微分といった、整数階でない微分である。今回はそれを使った応用を考えてみたい。

人間の視覚というものは明るいものは強く感じることができる。これは当たり前である。そして、それだけでなく、強さが変化している所にも(興味を)強く感じ取るようになっている。岡本安春氏の「Delphiでエンジョイプログラミング」によれば、そのような考えはLaming(1986)がdifferential coupling(差動結合)として発表しているらしい。

ということは、人間が画像を感じる特性というものは、画像強度と画像強度変化(画像強度の一階微分)の中間的なものであると言うことができるかもしれない。とすれば、分数階微分を導入すれば面白い表現ができるかもしれない。
今回は、そういう考えのもとに分数階微分を用いて人間の画像特性について考えてみたい。

まずは、元画像を示す。元画像はガウス分布に基づいて作成されたものである。

元画像とその鳥瞰図

まずは、左の元画像を見て欲しい。どこに強い感じを受けるだろうか?白い部分はもちろんであるが、白と黒の境界部にも強い感じを受けるだろう。ギザギザになっているのはデータが少ないからなので、無視して欲しい。というわけで、人間の視覚画像特性は

  • 画像強度
  • 画像強度変化(画像強度の一階微分)
というものの中間的なものと結び付けることができる(としておく、今回は)。それでは、元画像から元画像の一階微分までの間で連続的に分数階微分をしてみる。先の元画像を見たときに受けた印象と近いものが、分数階微分画像の中にあるかどうか探してみてもらいたい。
元画像から元画像の一階微分までの分数階微分画像

元画像

1/2階微分画像

15/20階微分画像

1階微分画像

白地に黒画像バージョンも示しておく。紙の上の画像に慣れた人にはこちらの方が良いだろう。

元画像から元画像の一階微分までの分数階微分画像(白地背景)

元画像

1/2階微分画像

15/20階微分画像

1階微分画像

なお、今回の画像の作成は次のような手順で行っている。

  1. 1次元のガウス分布を作成する。
  2. 微分値が正であるような半分の領域を線対称に回転させ、2次元画像を作成する。
なぜ、このような方法をとっているかと言えば、微分値が負の値になる領域を除きたいからである。

今回は

  • 画像強度
  • 画像強度変化(画像強度の一階微分)
というものの中間的なものとして分数階微分を用いたが、これに限る話ではない。例えば、
  • 電位
  • 電界(電位の微分、といっても本来は電位が電界の積分か)
とか、あるいは、
  • 人口密度
  • 人口密度変化(人口密度の微分)
といったものでも良いだろう。今回のデータを電位とか人口密度に基づくものとして読み直せば良いだけである。色々と用途があるのかもしれないと思う。分数階微分の定義からすれば、位相遅れなどが存在する物理現象であれば、物理的な意味を厳密に持たせた上での解析ができるように思う。いずれ、音響インピーダンスなどの解析に用いてみたい。

さて、分数階微分を調べる中で、バナッハ空間についても調べた。調べ始めた時には、聞き覚えもなかったが、調べてみるとヒルベルト空間の導入で登場していた。きれいさっぱり忘れていたようである。
京大数学教室 徳永健一氏のWEB (http://www.kusm.kyoto-u.ac.jp/~kenichi/)
から辿れる「「年齢の本」数学者版」によれば
バナッハがバナッハ空間を提唱したのは30歳の時であるらしい。(http://www.kusm.kyoto-u.ac.jp/~kenichi/age/30.html)
うーん...

分数階微分の謎 

線形代数、分数階微分、シュレディンガー方程式の三題話

分数階微分?

InterLabの1999No.5を読んでいると面白い記事があった。いわき明星大学理工学部の榊原教授の「Waveletと数式処理ツール」という記事である。といっても、興味を持ったのはWaveletのことではない。もちろん、Waveletに興味がないわけではない。この榊原教授が講師を務めたWavelet講習にも参加したこともある。しかし、今回興味を惹かれたのはその記事中にあった「分数階微分の解析」である。

InterLabの榊原教授の記事を引用すると、-通常微分・積分は整数回実行できるが、分数階微分はこれを分数に一般化したものである。さまざまな物理や工学の現象の記述に使われるようになった-とある。一階微分とか二階微分というものはよく使うが、0.5階微分などというものは使ったことがない。どのようなモノなのかさえよくわからない。

参考:

一体、どんな物理や工学の現象の記述に使われているのか知りたくなったので、infoseekで調べてみる。すると、

いわき明星大学の清水・榊原研究室の「粘弾性動モデル」が引っ掛かる。

参考:

衝撃吸収・シリコーンの弾性率などに興味を持っている人には面白いかもしれない。

もう少し調べてみると「バナッハ空間バナッハスケールにおける分数階積分作用素」というようなキーワードも引っ掛かる。

そこで、まずは勝手に分数階微分について考えてみた。

分数階微分・積分の勝手な想像図


まずは、イメージを考えるためにグラフを作成してみる。x^2の関数、および、それを微分・積分した関数である。微分は3階まで、積分は2階まで行っている。

図.1:x^2を微分(3階まで)したものと、2階まで積分したもの

このグラフ形式の表示をちょっとだけ変えてみる。

図.2:x^2を微分(3階まで)したものと、2階まで積分したもの

ここまでくると、平面グラフにしてみたくなる。つまり、微分・積分の階数を離散的な整数値でなく、連続的な値としてのイメージに変えたくなる。

図.3:x^2を微分(3階まで)したものと、2階まで積分したもの

これで、微分・積分が整数階でない場合のイメージ(勝手な)ができた。微分・積分が離散的なものではなくスムーズにつながっているものであるというイメージである。図.2から図.3への変化をよく覚えていてほしい。

といっても、これは数学的なイメージのみで物理的なイメージはまだここでは持っていない。位置、速度、加速度などの微分・積分で選られるものに対して同じようなイメージを適用すると、位置なんだけれどちょっと加速度っぽいもの、とか、速度と加速度の「合いの子」みたいなものというような感じだろうか?

さらに、これから先は、f(x)という関数が示す無限個の値を位置ベクトルと考えて、f(x)というのは無限次元空間の一つの点だというイメージを持つことにする。線形代数を考えるならそれが一番わかりやすいだろう。任意の階で微分された関数群が集まって、さらに高次元の空間をなしているというイメージである。

分数階微分を調べる

勝手なイメージはここまでにして、手元にある数学の参考書の中から手がかりを探してみた。すると、
大学院入試問題解説 - 理学・工学への数学の応用 - 梶原壌二 現代数学社ISBN4-7687-0190-6
の中に手がかりがあった。あれ、ということは以前にやったはずなのか...そう言えばおぼろげな記憶がちょっと...

その中の言葉を少し引くと、
フーリエ変換は等距離作用素である、関数空間L^2(R)における回転といえる。結局、

ここで、fは元の関数であり、Fはフーリエ変換
となる。そして、古典力学におけるハミルトン関数において、運動量を微分演算子で置き換えれば、量子力学や量子化学のハミルトン演算子が得られ、シュレディンガー方程式などにつながるのである、とある。他の資料を眺めてみると、どうやら量子力学などの分野からの要請に応じてここらへんの微分演算子の分野が発展しているようだ。理論物理などをやった方ならよくご存知のことだろう。例えば、水素原子の基底状態の波動関数へ運動エネルギーの演算子を作用させるというような、基本的な所でも、このフーリエ変換を用いた微分演算が用いられてる。

さて、この式自体は非常に簡単である。それにイメージも湧きやすい。
i を掛ける演算、私のイメージでは複素数空間の中で90度回転をする(言い換えれば、位相が90度ずれる)演算、が微分・積分であるというイメージはスムーズに受け入れやすい(それが正しいかどうかは知らないが)。なぜなら、微分が空間の中での回転であるとすると、三角関数の微分・積分に関する性質(例えば、Sinを微分するとCosに、Sinを2階微分すると-Sinになる、すなわち、一回の微分につき位相が90°ずつ回転する(位相がずれる)というような性質)が納得でき、それがフーリエ変換という形で登場してくることがスムーズに受け入れられるのである。また、微分といえばとりあえず三角関数の登場というイメージもある。

 もう少しわかりやすく書くと、

  • 三角関数では一階微分の結果は90度位相がずれる(回転する)。
  • ならば、(例えば)0.5階微分は45度位相をずらせば良い。
  • 任意の関数もフーリエ変換により、三角関数に分解される。
  • ならば、任意の関数に任意の実数値の微分が成立する。
ということである。

 任意の関数をフーリエ変換し三角関数に分解した時の位相、言い換えれば、周波数領域での位相ずらし、で分数階微分が定義されるということは、物理的実用的に大きな意味を持つ。例えば、電磁波、弾塑性運動などの物理現象の中での位相変化を分数階微分で解けることになる。例えば、複素貯蔵弾性率などについて分数階微分との関係は深そうである。あるいは、媒体中の電磁波の位相などについて適用するのも面白そうである。

分数階微分を使ってみる


よく分からないところも多いが、とりあえず、

という式を使ってみる。まずは、使ってみないとわからない。とりあえず、1次元の関数を作成して、この式を適用してみる。まずは、よく出てくるガウス分布で適用してみる。まずはガウス分布とそれの通常の一階微分の解析解を求める。
ガウス分布(左)とその一階微分の解析解(右)

それでは、今回の方法による一階微分の結果と、それと解析解との比較を示す。なお、本来無限領域のフーリエ変換を有限の領域で行っているため、端部近くで変なことが生じるのはしかたがないだろう。また、色々な事情により係数の違いは無視して欲しい。

フーリエ変換を用いた方法(左)と解析解(右)の比較

ちょっとずれが生じているが、こんなものだろう。しかし、これだけでは今回のフーリエ変換を用いた微分の面白さはでてこないので、0から2の範囲で連続的に分数階微分をしてみる。

ガウス分布の0から2の範囲における連続的な分数階微分

1/10 (=0.1)階微分

1/2 (=0.5)階微分

7/10 (=0.7)階微分

1階微分

13/10 (=1.3)階微分

15/10 (=1.5)階微分

17/10 (=1.7)階微分

2階微分

モーフィングのようで面白い。

さて、今回は分数階微分を勉強してみる所までで、これの応用は別に行ってみたい。もちろん、言うまでもないと思うが、間違いは多々あると思う。いや、田舎に住んでいるもので資料がないんですよ。

2004-03-30[n年前へ]

超萌え代数 - hyper-moe algebra - 

超萌え代数 - hyper-moe algebra - 「初等ロリータ指向(×嗜好)プログラミング」「ロリータ指向プログラミング中級基本編」を開発したEntis Lab.が今度は数学を生み出した。その数学の名は「超萌え代数-hyper-moe algebra- 」 萌えもついにhyperになったのである。

 「萌え」の世界の原点(萌え零点)とは一体何処か?、「萌え」は果たして可換なのか?、そしてはたまた、さらに一般化された「超萌え-hyper-moe algebra-」とは何なのか?かつて、「やおい」の評価演算子で「やおい代数学」が生まれたように、「萌え」も数学としてその姿が明らかになる、…のかも…。

2004-04-04[n年前へ]

萌え論 

萌え論 「超萌え代数」を支える理論、それが「萌え論」だ。この理論によるならば、全ての人を数平面上に散らばらせてみたときに、「第1象限にたたずむ奴らそれがヲタクである」らしい。すると、「他の各象限はどうなのか」という疑問は当然湧き上がるに違いない。その疑問に答えるのはこれを読んだ人の誰かかもしれない。

 算数は実生活で役に立つが数学は役に立たないという人もいる。しかし、数学が経済学や工学を支えることも多い。経済学や工学であれば、実生活に近いと感じられるだろうから、数学も実生活で役に立つと納得もしてもらえるものかもしれない。こんな萌え学だって、社会の何かを支えることも多いかも? それが、どんな社会であるかはさておき。


2008-11-14[n年前へ]

「色を変える"宝石"ガーネット」と「"変化"するMathematica」 

 「色を変える"宝石"ガーネット」の光吸収スペクトルを探すうちに、こんなページこういったページに出会いました。こういうページを眺めていると、単純な色名では表現できない宝石の光吸収スペクトルを(数式処理プログラムの)Mathematicaで関数にして、さまざまな照明の中で、宝石が外に見せる色を計算するライブラリを作りたい、と思ったりします。

 光吸収スペクトルは変わらなくても、照明光スペクトルや視覚スペクトルに依存して「見た感じ」が変わるようすをMathematicaで描いてみたいと思ったわけです。

 そんなことを思いながら、もうすぐ公開される Mathematica の新バージョン、バージョン7を見ました。そのMathematicaが"変化"し続けるさまは、なぜか「色を変える"宝石"ガーネット」を連想させました。さまざまな機能が追加され、姿・見た目が大きく変わっているように見えても、少しその新たな装いを脱がしてみると、その下にはこれまで同じ「HEADで表現される構造が組み合わさったオブジェクト」が見えてきて、そこに色を変える宝石と同じさまを感じたのです。

 色鮮やかに映える機能をとても魅力的に感じる人は、多いことでしょう。その一方で、特に変化するわけでもない内部の光吸収スペクトルや基本オブジェクト構造に不思議に心惹かれる人もいるように思います。「さまざまな機能を使って何かをしたい」と思う人もいれば、「基本構造を組み合わせて何かを作ってみたい」と思う人もいそうな気がします。

 もちろん、その時の気分で「どっちが好き」かは変わることも多いかもしれません。このページを読む人は技術系の人が多いと思いますが、(この瞬間の)あなたなら「どちら」を好むのでしょう。どちらを選ぶのでしょうか?

spector








■Powered by yagm.net