2001-12-17[n年前へ]
■モンテカルロでビンゴ大会
「できるかな?」更新。 気づけば251回目。間もなく256回。もうすぐ全てがFになります。もちろん、今回の話のきっかけは土曜日のビンゴです。(リンク)
■モンテカルロでビンゴ大会
「幹事」のための確率講座
先日、会社の後輩が結婚したので、その結婚式の二次会が新宿で開かれた。会場は、花園神社近くにあるこじんまりとした地下のバーで、多分4〜50人くらいが普通に座ると一杯になる程の広さの店だろう。
そんな広さの店だったのだけれど、主賓のカップルの人徳だろうか、100人弱くらいの人達がその狭い店中に溢れていた。私達(『会社の先輩』と呼ばれる人達)はその一角に陣をとり、ビールを飲みながらカメラ談義などをしていた。EOS-1Digitalや50mmF1.0というレンズを前にして、私の手元にあるSpyzは段違いに情けなく、田代まさしの事件もあったせいで、恥ずかしさすら感じさせるほどだった。
そして、その二次会は四時少し前に始まったのだが、ほどなくビールとワインが進んだ四時半頃にはお決まりのビンゴ大会が始まり、私達もシートを片手に司会者の進行に耳を傾けた。
説明も要らないだろうけど、読み上げられた数がシート上にあれば、 穴を開けて、穴が一直線に並べばビンゴだ |
(私を知らない人からは)クールと言われる私でも、何故かビンゴのシートを手にするとドキドキしてしまう。景品がどーしてもどーしても欲しいー、というわけではないのだけれど、やっぱりビンゴのシート片手にドキドキしてしまう。そんなドキドキは私だけではなくて、私の周りもみんなビンゴのシートを手にドキドキしているし、人間でなくてロボコップのようだと評された(評したのはワタシだが)こともある人でさえも、ビンゴのシートを手に司会者の声に耳を澄ませているのだから、きっとそれはみんな同じなのだ。
そして、そんな中、司会者は次々と数字を読み上げていった。が、何回新たな数が読み上げられても私の手元のシートはなかなか穴が増えていかないのである。クジ運が良いとは言えない私のシートがビンゴになかなか近づかないのはいつものことなのだけれど、ワタシの周囲の人もまた同じように全然穴が増えていかないのである。そして、それどころか実は会場全体の人がそうだったのである。全然「リーチ」と声を上げる人もいなくて、狭い会場で100人弱もの人がいるにも関わらず、この遅々たる進行状況はかなり異常なのではないか、と感じてしまうほどなのだ。
で、そのゲームの最中に手元のビンゴのシートを眺めながら私は考えた。なんで、こんなに時間がかかるのだろう?私だけでなく、ここに集う全ての人は不運の持ち主なのだろうか?不運の持ち主が100人集まるとは、これは一体何事だ?不運の会か?と、結婚式の二次会にはとても相応しくない想像さえしていた。
で、そんな相応しくない想像をしながらそのシートを眺めていると、ふと気づいたのである。「ん?99?えっ?きゅーじゅきゅうー?」 この不安な気持ちは何だろう?手元のシートは5x5で高々25個の数字しかないのに、書いてある数は99までもある。ということは、呼び上げられる数字はきっと01から99までの100個。ということは、呼び上げられる数字に対して、手元のシートの「数字」の数は1/4程しかない。それでは、そもそもシート上になかなか穴が開いていかないのではないだろうか?そのペースで一体何回数字を読み上げれば、シート上で穴が一直線に並ぶのだろう?そして、あの何個もある景品達は一体何時になれば全部売れていくのだろう?う〜ん、ビールが回った頭では全然判らないぞー。いや、きっとシラフでも判らないぞー、そして、貸切の時間を考えるときっと司会者もドキドキしてるぞーと思ったのである。
結局、最初にビンゴになった人が出たのが、ビンゴを始めてから20分以上過ぎてからだったと思う。そして、10個ほどの景品が配り終えられたのはビンゴが始まって一時間程した頃だった。つまりは、二次会がお開きになるくらいの時間だった。司会者はかなりヒヤヒヤしていたようだった。
そして、帰りの電車の中で私は考えた。もしかしたら、ビンゴ大会を開く幹事には、確率統計の知識が必要とされるのではないか、と。何人の人達が会場にいて、景品は何個あって、ビンゴのシートには1から何までの数が書かれているから、一分に一個の数字というペースで読み上げていけば、ビンゴ大会にかかる時間は何分だ、と概算できるくらいでないともしかしたらマズイのかもしれない、と思ったのである。少なくともヒヤヒヤしないためには、そんな概算をしておくのも良いかもしれない、と思ったわけだ。
で、そんな司会者・幹事のために、今回試しにビンゴの確率論を計算してみることにした。といっても、私は確率・統計がどうにも苦手なので、モンテカルロシミュレーション(別名下手な鉄砲も数打ちゃ当たる法)である。つまりは、何回もサイコロを振ってシミュレーションしてみただけの話である。PCの中で繰り返し、ビンゴ大会を開催してみただけなのである。ビンゴというギャンブルの確率を計算するのだから、それはもうモナコ王国誇るモンテカルロ・シミュレーション以外ないと思うのである。
そんなわけで、下に示すのが「何回目でビンゴになるか一万回試行したときのモンテカルロシミュレーションを行ってみた結果」である。実際にビンゴ大会を一万回したらものスゴイ時間がかかるが、PCの中だったら一瞬ですむのが素晴らしいところである。ちなみに、ビンゴのシートの条件は、シートに書かれている数字が
- 01〜24
- 01〜49
- 01〜74
- 01〜99
これを見ると、例えば、シートに書かれている数字が01〜24までの範囲の場合は、12回目位で半数の人がすでにビンゴになっていることが判る。一分に一個の数字というペースで読み上げていけば、5分過ぎには半数が終了している、というペースである。かなり速いペースである。
それに対して、シートに書かれている数字が01〜49までの範囲の場合ともなると、25回目位でやっと半数である。とはいえ、一分に一個の数字というペースでも、12,3分で半数がビンゴだから、これもやはりかなり速い進行だ。
ところが、さすがにシートに書かれている数字が01〜99までの範囲の場合ともなると、半数がビンゴになるのが、60回目位なのである。先程の数字を読み上げるペースであれば、時間にして30分である。景品の授与の時間などを考えると、かなり時間がかかってしまいそうだ。きっと4,50分ほどはかかることだろう。実際、先日のビンゴ大会はその程度の時間がかかっていたわけである。
そこで、試しに先日のビンゴ大会と同じ人数でモンテカルロ・シミュレーションをしてみた結果が下である。会場に100人の人がいた場合のビンゴになる人の回数(時間)に対する割合である。
この結果だと、会場に100人の人がいた場合、最初のビンゴになる人は
- シートに書かれている数字が01〜24までの範囲の場合 → 4回目
- シートに書かれている数字が01〜49までの範囲の場合 → 8回目
- シートに書かれている数字が01〜74までの範囲の場合 → 10回目
- シートに書かれている数字が01〜99までの範囲の場合 → 27回目
というわけで、これからの忘年会・パーティーシーズンに向けて、「幹事」は電卓を叩いて会費の計算をするだけではなくて、確率・統計の知識もあると便利かもしれない、モンテカルロでビンゴ大会の予行練習をしてみるのも良いかもしれない、と思ったのである。とはいえ、そんな確率統計を計算し尽くした「幹事」もちょっとイヤかも、とビールが回った頭で想像したりしたのだった。
2001-12-24[n年前へ]
■私と二度めに出会う「水」
クリスマスの小さな遺品
先日、こんなメールを頂いた。
私の娘は小学三年生。図書館から借りてきた「水の一生」といった、子供向け科学本(蛇口から出た水は下水を通って…<途中大幅に省略>…再度雨になって…というヤツです)を読んでおりました。そこで彼女はいくつかの疑問を口にしました。可愛い娘さんとお父さんの楽しそうな会話が伝わってくるメールである。「一度下水に流した水は、どのくらい経ったらまた私のところへ戻ってくるの?」さて、どう思われますか?
私 「必ずしもすべての水が海まで行くわけではなくて、下水処理場で蒸発して、川の取水口あたりで雨になる分子もあるはずだから、そうだなあ、一番早くて3日くらいかなあ。 勿論もっと長い場合もあるし、一度流したらキミが生きている間にはここには戻ってこない分子もあると思うよ」
「コップ一杯の水の中で、私と2度目に出会う水はどれくらいあるの?」私 「う〜ん… どれくらいなんだろう?」
ところで、この後半の疑問「コップ一杯の水の中で、私と2度目に出会う水はどれくらいあるの?」というのはたまに見かける話である。何かの小説で、「このコップの話が主人公が科学を志したきっかけになっている」という小道具に使われている例も読んだことがあるような気がする。
たまに見かける話ではあるのだけれど、同じ本を読んでも人それぞれ抱く感想は違うし、私なりにも考えてみたい気もしたので、今回はこの「コップ一杯の水の中で、私と2度目に出会う水はどれくらいあるの?」を考えてみることにした。
人が一日に「出会う」水はどの位の量だろうか?成人男子が安静にした状態で、一日当たり大体2.5リットルの水を消費するという。すると、小さい子供の場合でも、少なくとも一日2リットルくらいは水を消費する、つまり水と「出会って」そして「分かれる」ことになる。2リットルの水というと、2000gだから、これを水の1molあたりの重さ18g /molで割って、さらにアボガドロ数(1mol当たりの分子数)をかけてやると、(2l = 2000g ) / 18g x 6.022x1023個 = 6.7 x 1025個となり、私たちが一日に出会う水分子の数の個数がわかる。
この「とある一日に私たちが出会った水」が川へ流れて、海へ流れて、地球上にまんべんなく拡がったとしよう。地球上の限りなくある水の中に含まれる「とある一日に私たちが出会った水分子」の割合は、いったいどのくらいの程度になるのだろうか?
地球上の水は大体14億km3くらいだという。そのほとんどは96.5%は海水で、残りが陸地のさまざまな場所(そしてわずかに空気中)に存在している。この地球上にある水の重さを計算すると、14億km3= 1350000000km3 = 1.4 x 109 x 1012 kg= 1.4 x 1024 g ということになって、これを水の1molあたりの重さ18g /molで割ってやると、地球上に存在する水分子の総量は 1.4 x 1024/ 18 = 7.8 x 1022mol ということになる。mol数から水分子の量に直すために、アボガドロ数6.022x1023個/molをかけてやると、地球上の水分子の総量= 4.5 x 1046 個という数字が得られる。
すると、地球上の限りなくある水の中に含まれる「とある一日に私たちが出会った水分子」の割合は
「とある一日に私たちが出会った水分子」 / 地球上の水分子の総量 = 6.7x 1025個 / 4.5 x 1046 個 = 1.5 x 10-21= 0.00000000000000000015%というとても小さい割合になる。この割合は、新たに水分子と出会った時に、その水分子が「とある一日に私たちが出会った水」である確率と言い換えても良いだろう。とにかく、私たちの普段の生活の感覚からすれば、限りなく小さく思えてしまう。しかし、その再会の確率はとても小さく思えてしまうのだけれど、決して私たちは「とある一日に私たちが出会った水分子二度と水と再会しない」わけでは無いのである。
例えば、180mlのコップ一杯の水の中には( 180ml = 180g ) / 18g x 6.022x1023個= 6.0 x 1024個の水分子が含まれている。ということは、このコップ一杯に含まれる水分子の中にいる、かつて「とある一日に私たちが出会った水分子」の数を計算してみると、
コップ一杯に含まれる水分子の数 x 「とある一日に私たちが出会った水」である確率= 6.0 x 1024個 x 1.5 x 10-21 = 9000個ということになる。コップ一杯の水の中にはかつて「とある一日に私たちが出会った水」が一万個近くも存在していることになる。
しかも、この計算は「とある一日に私たちが出会った水分子」だけで計算していて、決して「これまでに私たちが出会った水分子」で計算しているわけではないのだから、「コップ一杯の水の中で、私と2度目に出会う水」はもっと多いことになる。もちろん、実際には私たちが消費した水が理想的に拡散したりはしないだろうから、こんな風に上手くはいかないだろうけれども。
とりあえず、「コップ一杯の水の中で、私と2度目に出会う水はどれくらいあるの?」という疑問を口にした小学校三年生の娘さんには、「ずっと昔のある日に出会った水がコップ一杯の中には一万個近くもあるかもね」と答えておくのが良いかもしれない。計算の中身、アボガドロ数なんて言っても、小学校三年生では「あぼがど?あぼがろど…?」と頭がこんがらがるだけかもしれないけれど、とりあえず「おとーさんって、何でもわかるんだー」とちょっとくらいは尊敬されたりするかもしれない。
そういえば、先日東京で初雪が降った。「雪は天から送られた手紙」とは中谷宇吉郎の残した名言だけど、その雪を見ながらこんなことを考えた。
ある日誰かが亡くなり、荼毘に付される。すると、その人の体のほとんどの部分は火と共に空へ昇っていくことだろう。成人の体のおよそ60%は水分だから、体重60kgの人であれば、その60%の36000gもの水が空へ還ってゆくことになる。その空へ還っていった水分子が世界中に散らばっていった後に、いつかまたその水分子と出会うためにはどの程度の水があれば良いだろうか?どの程度の水があれば、この中には「かつてあの人と共に空に帰っていった水分子」が一個くらいはある、と言えるものだろうか?
これを先程と同じように計算してみると、ほんのちょっと「1 x 10-3g」ほどの水があれば、その中には「かつてあの人と共に空に帰っていった水分子」が一個くらいある、という結果になる。「1x 10-3g」ということは、大きさで言うと1mm3ほどになる。ちょうど雨粒一滴と同じ位の大きさだ。空から降ってくる雨一粒の中には「かつて亡くなった人と共に空に帰っていった水分子」が1個が漂っている、ということになる。
冬の雪の一片の大きさが雨の一粒と同じくらいであるかは判らないけれど、今日のように何時の間にか雨が雪に変わることもあるくらいだから、やっぱり雪も雨と同じような大きさなのだろう。だとすれば、空から降ってくる雪の一片の中には、「かつて亡くなった人と共に空に帰っていった水分子」が1個宝石のように入っていてもおかしくはない。「雪は天から送られた手紙」であるならば、その中にはその手紙を天から送ってくる「かつて亡くなった人」のまるで遺品が1個づつ封じ込められているのである。「雪は天からの遺品」と言っても良いかもしれない。
間もなく、クリスマス。そして、クリスマスには白い雪が付き物だ。空から舞い降りてくる白い雪の中には大切な1個の水分子「クリスマスの小さな遺品」が入っているのである。
2002-02-11[n年前へ]
■めがねっこ大好き。
めがねを外すと美人になるは本当か!?
理系=めがねっこ大好き? 「どんな時に自分を理系だと思う?」と文系人間に聞かれた。私は「うむむ…」と答えに詰まってしまった。そんな私に、その文系人間はまるで勝ち誇ったような表情で「じゃぁ、理系と文系はどう違うと思う?」と畳みかけるように聞いてきた。この手の数限りなくある、「理系と文系」「男と女」はどう違う?という問いには立ち入ってはいけない、というのが私の家の代々の家訓なのであるが、ここで黙りこんでいては「勝ち負け」でいうところの「負け」だと思ったのか、理系の誇りを守るべく、私の口がいきなりしゃべり出した。
例えば、建築で言えば、鉄骨建築が理系で、プレハブ住宅が文系なのである。体で言えば、皮膚の感覚を大事にするのが文系で、骨から組み立てていくのが理系なのである。つまり理系は骨があるのである。そして、詩で言えば、散文詩は文系で定型詩が理系なのである。つまり、理系は型にこだわる部分があるのである。と、スキーのモーグル競技でコントロールを失い、コースアウトしてしまう選手のように私の口は暴走を続け、理系=めがねっこ大好き、という辺りではもう「勝ち負け」でいうところの「負け犬」であるようにしか思われず、理系の誇りを守るどころか、理系を単に汚しただけに終わってしまった。そこで、悔しさのあまり、今回は「めがねっこ」に対し理系的なアプローチで近づいてみることにした。そして、私が汚してしまった理系の汚名をすすぎたいと思うのである。だから、例えば理系は女子高生の制服が大好きなのである。色々ある女子高生をセーラー服(あるいはブレザー)という記号で記号・集合論的に取り扱うことを可能にし、その記号を言葉にし、ついにはその制服を見るだけで萌えることができるのである。それが理系なのである。
つまりは、「このアイドルがなんとなく好き」というのが曖昧模糊としたものが文系であるならば、「このアイドルがめがねっこだから好き」という確固とした意志それすなわち理系なのである。理系=めがねっこ大好きなのである。
「めがねを外すと美人になる」は本当か!?
よく、少女マンガなどで、「ヒロインが眼鏡をとると美人になった」というストーリーをみかける。今はどうだか知らないが、少なくとも昔はよくそんなストーリーを見かけた。あれは果たして本当だろうか。そして、それが本当であるならばそれは一体どんな物理現象なのだろうか?そして、ヒロインが眼鏡をとると美人になった」というストーリーと「めがねっこ大好き」というそ相反する二つの事象はどんな原因に基づいているのであろうか?それを理系的なアプローチで明らかにしてみたいと思う。
めがねはもちろん視力が悪い場合に、その矯正を行うための道具である。近視の人であれば矯正のために凹レンズをかけるし、逆に遠視の人は矯正のためには凸レンズをかける。凸レンズと言えば、虫眼鏡と同じで、何かの近くにレンズを持っていけばそれが拡大されて見える。また、逆に凹レンズであれば、対象物が小さく見える。
だから、近視の人が凹レンズである眼鏡をかけた場合には、その人の目が他の人からは小さく見えてしまうのである。実世界でも、少女マンガの世界でも大きな瞳は美少女の象徴であるが、近視の人が眼鏡をかけると、大きな瞳を持つ美少女でもちっこい瞳になってしまうのである。
試しに、仲間由紀恵に凹レンズの眼鏡をかけさせた場合の、シミュレーションを行ってみたのが下の結果である。左のめがねをかけた「近視の」仲間由紀恵は確かにキレイではあるけれど、右の仲間由紀恵の方が、美少女という魔性の魅力という点で遙かに勝っていることが判るだろう。
そう、近視の人の場合には、「めがねを外すと美人になる」は物理的に本当なのである。近視の人の割合は国によって大きく違うらしいが、少なくとも現代の日本では近視の人の割合は圧倒的に多い。ほとんどの人が近視である、といっても良いくらいである。ということは、そんな日本では「めがねを外すと美人になる」はかなりな確率で事実である、と言えるわけだ。
それでは、「めがねを外すと美人になる」ということと相反するとしか思えない「めがねっこ大好き」現象をどう説明したら良いだろうか?一つは、遠視の場合先の近視の場合と逆のことが起きる、ということである。すなわち、遠視の人の場合には、眼鏡をかけると瞳が大きく見えるのである。すなわち、眼鏡をかければ、美少女の象徴たる大きな瞳が手に入るのである。
下の「遠視の」仲間由紀恵の場合の眼鏡シミュレーションを見てみると、めがねをかけたことでずいぶんと美少女度がアップしていることが判ることと思う。まさに、その瞳には魔性の魅力が宿っているとしか思えないほどなのである。
ということは、「眼鏡を外すと美人になる」は本当。ただし、近視の人の場合は、ということなのだ。そして、もし遠視の人であれば、「眼鏡をかけると美人になる」が本当なのである。
とはいえ、日本人では遠視の人は少ないわけで、それではめがねっこを増やす原因たる「眼鏡をかけると美人になる」が少なくなってしまう。そこで、他の原因を考えてみると、例えば近視の人が裸眼の時には瞳の口径を小さくすることで、被写界深度を深くする、すなわちハッキリとものを見ようとして、目を細めがちであること、すなわち小さな瞳になりがちであること、なども原因の一つとして考えられるだろう。
そしてまた、実は近視の程度が低い場合には、「めがねっこ大好き」現象を支えるもう一つの事実がある。レンズの度数がきつくなくて、他の人から見た瞳の拡大縮小が行われないような場合にも、眼鏡をかけると実は心理的に瞳の大きさが変わって見えるのである。
下の「目が小さい」仲間由紀恵は左右で目の物理的な大きさは完全に同じである。が、心理的には結構違って見える。眼鏡をかけた仲間由紀恵の方が目が大きく見えることが判ると思う。「目が小さい」場合、めがねをかけると瞳が大きく見えるのである。
「目が小さい」仲間由紀恵 | 「目が小さい」仲間由紀恵 |
日本人は目が小さい人が多いから、このような眼鏡をかけると心理的に瞳が大きく見える影響は無視できないに違いない。
ところが、目がもともと大きい場合には、この現象はそれほど大きく現れるわけではない。もともと瞳が大きいがために、眼鏡をかけたからといって割合的にそれほど瞳が大きく強調されたりはしないのである。その例を下に示す。下の二枚は目の物理的な大きさは完全に同じなのであるが、心理的に受ける瞳の大きさ=美少女度の違いは上の例ほどではないことが判るだろう。
「目が大きい」仲間由紀恵 | 「目が大きい」仲間由紀恵 |
ということで、
- 瞳が多きい近視の人の場合、眼鏡を外すと美少女になる
- 目が小さかったり、遠視だったりする人の場合、「めがねっこ」=美少女になれる
ところで、理系と文系…
さて、理系的「めがねっこ大好き論」も良いのだが、話をそもそもの「どんな時に自分を理系だと思う?」という問いに戻ろう。
よく私が見かけるパズルは大抵が論理的なパズルだ。論理的=理系ではないから、それを理系パズルと呼ぶのはいけないと思うが、あえてそれを理系パズルと呼んでみる。間違っているのを承知で、あえてここではそう呼んでみる。
そんな理系のパズルでもやっぱり色々あるだろう。大抵のそんなパズルの答えは答えがただ一つに限られるものだろうが、時にはその答えが無限にあるものもあるかもしれない、そして答えが一個もないパズルだってあるかもしれない。そしてまた、「答えを見つけられないこと」を証明できるようなパズルだってあるだろう。だけど、いずれにせよ、そのパズルを解く過程で現れようとする「割り切れない何か」は「それが割り切れる軸」を駆使することで、巧妙に消し去っていくことができる。だから、とてもそれは結構気持ちが良い作業だ。少なくとも、私にはそうだ。あるいは、答を判定するものが、自分ではない論理なり自然現象に任せられているから楽なのかもしれない。
だけど、もしそんな論理的なパズルとは違う非論理的なパズル、ここではあえて文系のパズルと呼ぶようなものがあったとしたら、その答えは「割り切れない何かを拾い集めたようなもの」であるような気もする。そして、その解く過程はもしかしたら割り切れない感情や雰囲気を拾い集めて、割り切れないままに何とか答えを投げ出しいく作業であったりするのかもしれない。それに、そこでは答を判定する何かなんかそもそも存在しないか、あるいはその判定する何かが人であるのかもしれない。
私には、そんな「割り切れないままに何とか答えを出していく作業」はちょっと辛いなぁと思う。やっぱり、私は理系パズルの方がずっと楽で気持ちが良い。だから、今度「どんな時に自分を理系だと思う?」と聞かれたら、そんなことを上手く言えたらいいな、と思う。いつも、思い浮かべたことを伝え続けたいな、と思う。
2002-06-14[n年前へ]
■生まれ変わるのは何時だろう?
「次」に会えるのは何時…かな?
人間必ずしも寿命がある。一世紀を超え生きている人もいれば、あまりに若くして亡くなる人もいる。今の瞬間に生まれてくる命もあれば、亡くなる人達もいる。亡くなっていった人達は、今何処にいるのだろう?もう、何処にもいないのだろうか?それとも、この世界の何処かに生まれ変わっているのだろうか?あるいは、どこか違う世界の何処かにいて、次に生まれ変わる日を待っているのだろうか?もしも、彼らがどこか違う世界の何処かにいて次に生まれ変わる日を待っているとしたら、という前提のもとで、「その人達がいつ生まれ変わるか?」なんて、そんな判るはずもないことを少し考えてみた。
始めに、全ての魂が、「この世」と「あの世」を行き来するものとしてみる。「この世」から消えていった魂は「あの世」に行って、そしていつか「あの世」から「この世」に魂が戻ってきて「生まれ変わる」という考え方である。魂は「この世」か「あの世」かのいずれかに必ずいる、わけである。すると、これら二つの世界に存在する魂の総数は一定、という前提が自然だろう。もし、「いきりなり魂が増えたり減ったりする」と考えるのであれば、「魂」なんて考え方を導入する意味が薄れてしまうに違いないからである。
そこで、「この世」と「あの世」の「魂の収支」を描いてみたのが下の図である。全ての魂が「この世」と「あの世」を行き来し、その「収支」を考えれば、どんな風に生まれ変わるかが判るわけだ。
この収支を定量的に考えるために、まずは「この世」にいる魂の数を調べてみた。簡単に言えば、地球の上の人口である。その「この世」で生きている人の数を示したのが下の図である。このグラフから判るように、「この世」の人口はどんどん増加し、1930年には20億人だったものが、2080年には100億人位になりそうな勢いなのである。
さて、このグラフから「この世」にいる魂の数が判ったならば、それでは「あの世」にいる魂の総数はどんなだろう、と当然の疑問が沸くわけである。けれども、今のところそれを知る術はない。そこで、仮に魂の総数を100億人としてみよう。もちろん、その場合には「この世」の人口が100億人に達するだろう2080年以降はどうなるの?「あの世」には誰もいなくなっちゃうんじゃないの?という当然の疑問が沸いてくるわけであるけれど、そこは今回全く考えないことにしたいのである。何はともあれ、魂の総数を100億人と決めてしまう。そうすれば、
「あの世」にいる魂の数=魂の総数 - 「この世」にいる魂の数というわけで、「あの世」にいる魂の数、が決まる。そして、「あの世」から「この世」に生まれ変わってくる魂の数、すなわち、「この世」に新たに生まれる数、は出生数を調べてみれば判る。すると、
各年の「生まれ変わり」の確率 = 出生数 / 「あの世」にいる魂の数というようにして毎年の「生まれ変わりの確率変動」を知ることができるのである。
もちろん、色々な地域によって出生率は数人/1000~数十人/1000人と大きく異なるし、未来の出生率も正確には判らないが、各時代毎の平均的な出生率を使って試算してみたのが、下のグラフである。1930年から2100年の間に、「あの世」にいる魂達が「生まれ変わる」確率を計算してみたものである。「この世」の人口が増え、「あの世」の魂数が減るため、結果的に「その年に生まれ変わる」確率が毎年高くなっていっていることが判る。
このようにして、「生まれ変わり」の確率変動が判ると、××年に亡くなった人がいつ頃生まれ変わって、「この世」に帰ってくるかということが判るようになる。例えば、
- 1950年
- 2000年
- 2050年
このグラフを眺めれば、例えば1950年に亡くなった人であれば、それから40年弱時が経った1980年後半の年に生まれ変わってくる確率が高いし、一昨年、2000年に亡くなった人がいるならば、今から数年後の年に生まれ変わる可能性が高い、ということが判る。そして、2050年に「この世」から亡くなった人がいるならば、その人は亡くなってすぐの年に生まれ変わってくる確率が高い、と想像できることになる。
とはいえ、もちろんこれは「亡くなってから何年後の年に生まれかわるか?」という確率であって、亡くなってから×年後までに「生まれかわっている」確率ではない。2050年に亡くなった人がすぐ生まれ変わる確率が高い、といってもそれは高々4%程の低い確率でしかない。
そこで、亡くなってから×年後までに「既に生まれかわっているか」という確率を示してみたのが下のグラフである。
こうしてみると、1950年に亡くなった人達であれば、50年以上経った今でも、まだ半数以上の魂は「あの世」にいるだろうこと、まだ「この世」に生まれ変わってきていないだろうこと、が想像できる。だから、もし「亡くなったあの人と、もう一度何処かで出会うこと」があったとしても、それにはずいぶんと時間がかかっている、というのが自然だろう。そしてやはり2000年に亡くなった人達であっても、その魂の半数がこの世に生まれ変わっているのは30数年も後の2030年代だ。だから、やっぱりずっと先、にも思える。
だけど、どの確率だって、宝くじの一等賞に当たる確率よりはよっぽど高い確率だ。だから、ちょっと色んな世界を見渡して眺めてみるのも面白いかもしれない。全然違う顔で、全然違う年で、全然違う場所で、もういない誰かにそっくりな人がいるかもしれない。生まれ変わってきた誰かにもしかしたら、会えるかもしれない。