2000-01-31[n年前へ]
■落ちゆくエレベーターの中…で悩みます?
無重力の理想と現実(仮)
今日もまた「ちゃろん日記(仮)」を読みに行くと、何とも面白い話があった。
である。この「ちゃろん日記(仮)」は「疑問とそこに隠れている真実を見つけだす感覚」に満ち溢れている、と私は思うのである。面白すぎである。さて、今回の話は、エンパイアステートビルでエレベーターが落ちたっていうけど、落ちていくエレベーターの中の人は
- 床に張り付く
- 天井に張り付く
- 宙に浮かぶ
「ほんとう〜にそうか? ほんとう〜にそうか?」
こういういかにも教科書に載っていそうな話には、時として落とし穴がある。教科書に書いてあるのは理想的で単純化した場合の結果である。それを鵜呑みにすると間違えてしまうことになる。極端に言えば、教科書に書いてあるような理想的な状態はほとんど存在しないので、教科書に書いてあるような現象はそうそう再現しない、ということになる。
ピサの斜塔から「落下の実験」を行ったのはガリレオ・ガリレイであると思っていると間違いである、というのは少し違う例になってしまうか。
久しぶりに思い出したが、私の所属していた研究室では重力測定は大きな柱であった。そして、確か大学院の入試問題の内の一題は、まさに
「落ちていくエレベーターの中の人達に働く力を精密に論ぜよ」であった(簡単に大雑把に言えば)。私はちゃんとこの問題を解けた覚えがない。いや、はっきり言えばずいぶん悩んだ覚えしかない。ってことはいまいち解けなかったのだろう。なので、「落ちていくエレベーターの中の人達は無重力状態である」と聞くと、「ほんとう〜にそうか? ほんとう〜にそうか?」と歌いたくなる。
研究室関連では、絶対重力測定を行う研究をする人達もいたわけである。絶対重力(加速度)測定は自由落下する物体の運動を測定して、重力加速度を測定するわけであるが、そう簡単に物体は自由落下してくれないのである。簡単な実験で物体を自由落下させて重力加速度を測定してみるとわかるが、大雑把な実験(自分の家ですぐできる程度の)では一桁ちょいの精度しか出ない。一桁ちょいの精度しかでないということは、(例えば)体重が10%弱程度になったように感じるかもしれないが、それは無重力ではない。体重が60kgの人であれば、6kgも感じてしまうのである。(雑な話だが。)
空気中を落ちてくる雨だってそうだ。もし、雨が自由落下を続けていたらものすごいスピードになって、雨に打たれるのは命がけになってしまう。しかし、実際にはそんなことはない。空気抵抗で速度は飽和してしまい、自由落下状態ではないからである。
さて、本題である。果たして、
例えば、
- 若井研究室の研究概要
- http://mech.gifu-u.ac.jp/~wakailab/research/Basic/base_h.html
北海道の上砂川町にある施設(JAMIC)で、490m落下させることにより、10秒の無重量環境が得られます。落下中は空気抵抗を受けるので、落下カプセルを二重構造にし、空気抵抗を無視できるように工夫してあります。と、記述されているように、実際には工夫をこらさなければ無重力状態は実現できないのである。絶対重力系などでも空気抵抗を無視するために、投げ上げて往復運動を測定するなどの工夫がいるのである。
と、言葉だけで書いてもしょうがないので、適当な計算でもしてみる。いや、もちろん、実験をするのが良いわけであるが、面倒だし…
まずはエレベーターには、
- 何の抵抗も働かない
- 空気抵抗とワイヤーの抵抗が働く
そして、エレベーターの中の人には空気抵抗は働かないとした。エレベーターの中の空気と人の速度差はほとんどないからである。また、エレベーターは人よりもはるかに重く、人の重さはエレベーターの運動に何の影響も及ぼさないと近似した。
その計算の結果を以下に示す。これが落ちていくエレベーターの軌跡である。抵抗のない場合が(赤)で抵抗のある場合が(青)である。エレベーターが落ち始めてから30秒後までの軌跡である。
理想的な場合(赤)に比べて、抵抗のある場合(青)の落ち具合が鈍っているのがわかると思う。それでは、もっと時間が経った場合はどうだろうか?それを次に示す。エレベーターが落ち始めて300秒後までの軌跡である。つまり、五分間もこのエレベーターは落ち続けているのである。落ちた距離は理想的な場合で40kmの深さに達している。すごいエレベーターである。こんなに落ち続けていると、すでに重力加速度が一定とは言っていられなくなる。
ここまでくると、抵抗のない場合(赤)と抵抗のある場合(青)では全然違う軌跡になっている。抵抗のない場合(赤)では放物線そのものであるが、抵抗のある場合(青)では一定の速度になっている。
それでは、エレベーターがこのような状態になった時の、エレベーターの中の人に働く加速度(と実際の加速度の差分)を示してみる。これを見れば、落ちていくエレベーターの中の人が無重力状態であるかどうかがわかる。まずは、300秒後までの変化を見てみる。
理想的な場合(赤)はずっとゼロすなわち無重力状態であるが、抵抗のある場合(青)は無重力状態は最初だけで、50秒後位には通常の状態に戻ってしまっている。最初の部分をもう少し拡大してみる。次に示すのは、3秒後までの落ちていくエレベーターの中の人に働く重力加速度(と実際の加速度の差分)である。
これを見ると、あっという間に人は無重力状態ではなくなっているのがわかると思う。
というわけで、先の三つの選択肢、
- 床に張り付く
- 天井に張り付く
- 宙に浮かぶ
先日みたニュースのエレベーター落下実験の中で、中にいた男性リポーターが、落下しながら「ひぃ?」とアオ向けになった状態で床にハリ付いていたからなのです。という実際の現象が正しいのである(いや、もちろん状況はかなり異なるが)。「頭の中だけ」で考えたことというのは大抵の場合間違ってしまう。(もちろん、今回の「できるかな?」の話もその例外ではない)
そして、その後に、
ありはきっと、速度がそこまで充分でなかったのと、もしやのトキのために、男性リポーターに安全な姿勢をとらせていたタメだと思われます。とあるが、実際問題として「速度がそこまで充分」になることは未来永劫ないわけである。だから、(私の中では)エレベーターの中の男性リポーター氏は床から浮かぶことはないのである。
こういうのは、結局考える人の数だけ答えがあるのだと思う。もし、その内のどれが真実に一番近いかどうか知りたければ、実験すれば良いだけの話だし。
2000-08-13[n年前へ]
■WEBの時間、サイトの寿命
ゆっくり長く続けましょうか?
以前、
でロゲルギストが- 第五物理の散歩道 ロゲルギスト著 岩波新書 「通信を考える」
- その系の情報処理の単位時間
- その系の信号の伝わる速度
- その系の空間スケール
- 空間スケール < 情報処理の単位時間 × 信号の伝わる速度
- 大人数から構成される企業のスピードは、少人数から構成される企業のそれには遙かに及ばない
ところで、ロゲルギスト達はある系の「単位時間・信号伝達速度・大きさ」の間の関係について、
- 「単位時間・信号伝達速度」を入力値として、「大きさ」を考える
- 「大きさ・信号伝達速度」を入力値として、「単位時間」を考える
さて、寺田寅彦が「単位時間・信号伝達速度・大きさ」について、さらにどのようなことを展開していたかというと、それはある系の「大きさ・寿命」についての関係である。寺田寅彦は
- 空想日録 三 身長と寿命 (寺田寅彦随筆集 第四巻 岩波文庫 小宮豊隆編)
- 人体感覚について振動感覚の限界を調べた実験データ、 - 人は自らの体の固有振動周波数の振動に対してもっとも過敏である- 、というものをきっかけとして、
- 生物の時間の長さの単位は相対的なものである
- ある系の「時間の長さの感覚 = 相対的な単位」はその系の固有周期と密接な関係がある(振り子時計なんてわかりやすいだろう)
- ある系の「寿命」を測る単位は、その系の「時間の相対的な単位」、すなわち、その系の固有周期だと想像してみよう。
- その場合、ある系の固有周期はその系の大きさに比例するから、大きい動物ほどその系の「時間の相対的な単位」は長いものとなり、見かけ上の「寿命」はその動物の「大きさ」に比例するだろう。
なるほど、サイズが小さい動物(すなわち固有振動の波長の短い動物)にとっては、ほんの小さな変化も大きな変化である。ということは、その動物の感じる「時間単位」は短くなければ、生き残れないだろう。逆に、サイズの大きな動物は俊敏な動きはできないわけで、その動物の「時間単位」は長くならざるをえないだろう。
ゾウのような大きい動物は「時間単位」が長く、一見「寿命」が長いように見え、ノミのような小さな動物は「時間単位」が短く、一見「寿命」が短く見えるというわけだ。実は、ゾウもノミもその動物自身の「時間単位」を基準にすると、同じ寿命を生き抜いているということになる。
本川達雄の中公新書「ゾウの時間 ネズミの時間」では- 体重の4分の1乗に比例して「その動物の時間単位=生理的時間」が長くなる-と述べられているが、昭和八年に既に寺田寅彦は体重は身長の3乗に比例する、逆に言えば体重は身長の3分の1乗に比例するから、「体重の3分の1乗に比例して時間が長くなるだろう」と想像を巡らせているのである。素晴らしい、想像力である。
さて、寺田寅彦はロゲルギストと違って、「単位時間・大きさ」については言及しているが「信号伝達速度」については触れていない(その替わり、さらに「寿命」にまで触れているわけであるが)。もっとも、私があえて書き加えてみるならば、ある系の固有振動にはその系の中での弾性が密接に関係するし、弾性はその中での弾性波の速度も密接に関係する。つまり、ある系の固有振動の周期というものには「その系中での波の伝達速度」が暗に隠されていて、寺田寅彦は単にそれを一定とおいていたわけで、寺田寅彦が述べた内容は実はロゲルギスト達の述べた内容を包括している、と私は思うのである。
このような「単位時間・大きさ・信号伝達速度・寿命」に関する話は動物に限るものではない。
- ロゲルギストが「信号伝達速度=光速度」として、「処理速度を確保する」ための人類の行動範囲について論じたり、
- 私(いきなり自分を例に出すのも何だが)が「信号伝達速度の変化」と「大きさ(人口)の変化」から人類の処理速度の変化について論じたり
さて、前振りが長くなった。前回、
では、単に「信号伝達速度の変化」と「大きさ(人口)の変化」を並べて「処理速度」の変化について考えてみただけだった。今回は寺田寅彦が考えたのと同じく、「信号伝達速度」と「大きさ(人口)」から「寿命」が決まると考えることにより、「人類」の「寿命」の変化について考えてみることにしたいと思う まずは、前回使った「人類の大きさ=人口」の変化が次のグラフである。ただし、この人口は全然正確ではないし、むしろかなり不正確なものであることは先に断っておく。ここでは、細かな値を使うのが目的ではないので別に構わないだろう。
そして、「人類」の中での「情報伝達速度」の変化を示したものが次のグラフである。この速度が「人類」という集合体の中での波の進行速度を決めるのである。
それでは、「人類」という集合体の固有振動はどうやって扱うかというと、この
- 「人類の大きさ=人口」
- 「情報伝達速度」
- 人口 / 情報伝達の速度
その、人口 / 情報伝達の速度 = 「人類の固有時間」を計算してみたものを次に示してみよう。
こうしてみると、人類というヒトの集合体においては、どんどん時間の流れは速くなり、それに応じて見かけの「寿命」は短くなっている、ということがわかる。人類はまさに生き急いでいるのである。もし、この流れを止めようと思ったら、どうしたら良いだろうか?それには、今回の計算から言えば情報転送速度を遅くするか、人類の大きさを大きくするしかない。情報転送速度を遅くするのはなんとも後ろ向き(byわきめも)だし、人口を減らすというのもなんとも後ろ向きだ。だとしたら、宇宙へでも人類が進出して、人類の空間的なスケールを大きくしていくしかないのだろうか?これもまた難しい話である。
さて、最近、大好きなWEBサイトが閉鎖してしまったり、更新速度が遅くなっていたりしていて少しさみしい。だけど、もしかしたら各WEBサイトにも、「更新速度が速いと、WEBサイトの寿命が短い」なんて法則が実はあるのかもしれない。更新速度が速いということは、そのWEBサイトの固有時間が速く流れているということで、限られた寿命をどんどん使い果たしているのかもしれない。
だとしたら、更新速度が遅いということはそのWEBサイトの寿命が長くなるということだから、それはそれで良いのかなぁ、などと思ってみたりする。「太くて短い寿命」も「細くて長い寿命」も実は本人からすればどちらも同じ長さなのかもしれないけれど、外から見ている私は「細くても良いから長く続いて欲しいなぁ」なんて思ってもみたりするのである。
2001-07-07[n年前へ]
■七夕の夜に願うこと
ベガとアルタイルと一通のメール
今日は七月七日、七夕だ。その夜、天の川の両岸で光る織女星と彦星が一年に一度だけ逢う。織女星は琴座(Lyra)のα星ベガ(Vega)で、彦星は鷲座(Aquila)のα星アルタイル(Altair)である。
ベガは地球から25光年離れた場所にあり、その明るさは0等のとても明るい星だ。もう一方のアルタイルは地球から17光年離れている。そして、ベガとアルタイルの間の距離は15光年離れている。それを15光年「も」離れていると思うか、15光年「しか」離れていないと思うか、それは人によって違うだろう。15光年「も」離れていると思う人は、ベガとアルタイルの間で言葉を交わしても、その言葉が往復するのに15×2= 30年もかかる、と考える。そして、15光年「しか」離れていないと思う人は、たった30年で言葉が通い合う、と考えることだろう。人それぞれだ。
誰かと待ち合わせている時、遅れた相手を例え5分間でも待つのも耐えられない人もいる。そして、1時間も相手を待つことが苦にならない人もいる。もちろん、それは誰を待っているかとかどんな状況かとかにもよるところが大きいだろうけれど、とにかく人それぞれの時間感覚があるわけだ。
人にもそれぞれの時間感覚があるように、生物にはその生物それぞれの固有の時間間隔がある。しかも、それだけでなくて、
で考えたように、生物に限らずあらゆる系でその系固有の時間感覚があることだろう。だったら、ベガとアルタイルの間で信号が伝わりあう30年という時間はベガとアルタイル自身の時間感覚からすると、それは長いのだろうか、それとも短いのだろうか。一体、どんなものなのだろう?まずは、星の寿命を普通に考えてみれば、ベガもアルタイルも主系列星で、それぞれの重さから寿命を計算することができる。ベガとアルタイルと体重は本当はちょっと違っていて、女性のベガの方が実はちょっと太っているのだけど、あまり女性のベガの重さを正確に言ってしまうと、当然機嫌を悪くするだろう。だから、ちょっと大雑把に言うとベガもアルタイルも大体太陽の3倍位である。それを使って寿命を計算してみると、彼らの寿命は100億年位になる。人間の寿命の1億倍である。逆に言えば、ベガとアルタイルの時間感覚は人間の一億倍ゆっくりだということになる。それだけ、人間に比べて二人は気が長〜いのである。
ところで、寺田寅彦・ロゲルギストなどが考えたように「系の寿命はそのものの大きさに比例し、それに応じた固有の時間感覚を持つ」として、ベガとアルタイルの時間感覚を適当に考えてみると、これが実はちょっと面白い。ベガとアルタイルの大きさはそれぞれ太陽の3倍、1.7倍なのだが、その程度の大きさの生物だと、その寿命は大体20億年位だという計算結果になる。これらの数字のオーダーからすれば、もうさっきの100億年という数字と全く同じだと言っても良いくらいである。まぁ、いずれにせよベガとアルタイルの時間感覚は人間の1億倍近く「気長」ということに変わりはない。
すると、ベガとアルタイルの間の30光年- 信号が往復するのに30年かかかる-という距離は、彼ら二人にとってはどの程度の時間だろうか?人間より一億倍気が長いベガとアルタイルにとって、人間にとっての15年はどの程度の時間だろうか? 試しに計算してみると、
30年×365日×24時間×60分×60秒 / 1億 = 9.5秒で、10秒弱ということになる。10秒というと、電話で話すというには無理があるかもしれないけれど、e-mailのやりとりよりにかかる時間よりはずっと短い。月に着陸しているアポロ宇宙船と地球との会話だって実は3秒近くかかる。ベガとアルタイルの間の「10秒(ベガ・アルタイル体感時間)」というのは、電話をしたり実際にベガとアルタイルが会って話をしたりするのには負けるだろうけれど、それでもメールをやりとりするのに比べたら、ずっと近い距離(時間)なのである。ベガとアルタイルはとても「近い」のだ。天の川の両側に離れていはいるけれど、やっぱり「近い」のである。
そういえばベガというと、地球の歳差運動により、一万二千年後にはベガは地球から見て天の真北に位置することになる。つまり、一万二千年後には織女星ベガは北の空の中央で輝いて、その時彦星アルタイルは織女星ベガの周りを回り続けることになる。ずっと先のことに思えるかもしれないけれど、一万二千年後なんてベガとアルタイルの時間で言えばたったの一時間後である。一時間後(ベガ・アルタイル時間)には、アルタイルはベガの周りをクルクルと回っていることになる。なんだか、そんなベガとアルタイルがほほえましく思えてしまうのは私だけだろうか。何か、そんなベガとアルタイルをちょっとからかってみたくなるくらいに思えてしまう。
ところで、そんな風にベガとアルタイルをからかうためではないけれど、アルタイルにかつて地球からメールが出されたことがある。スタンフォードの46mのパラボラアンテナからアルタイルに向けて、13枚の画像が送り出された。その13枚の画像は本当に子供の落書きのような過去の生物の画や人間の姿が描かれていた。そんな子供心いっぱいの画像もあるかと思えば、差出人(平林・森本)が二人とも飲むのが大好きだったので、メッセージの最後はアルコール分子の組成式で締めくくられていた。本当に、ちょっと間違えるとベガとアルタイルをからかうヨッパライになってしまいそうである。
(「星と生き物たちの地球」 平林久、黒谷明美から) |
1983年に送ったメッセージはもう昨年にはアルタイルに届いているはずだ。アルタイルからメッセージが帰ってくるとすれば、それは2016年になる。あと15年先だ。15年なんて、アルタイルからすれば5秒弱(彼にとっては)であっという間の時間だし、私達人間にとってもやっぱり15年なんてあっという間の時間に違いない。もちろん、本当のところアルタイルからの返事が帰ってくるわけはないのだけれど、だけどそれでも「 はじめまして、アルタイルです…」なんてメールが帰ってくるときのことを想像するのもとても面白いことに違いない。もしかしたら、2000年にアルタイルから送り返されたメールの返事が宇宙空間を秒速30万kmで走ってくる途中かもしれない、と酔っ払った頭で夢想してみるのも楽しいことだろう。
ところで、本来の七夕は旧暦の七月七日だから、今年の本当の七夕は八月二十五日ということになる。今夜七月七日を過ぎてしまったからといって、七夕が終わってしまうわけではない。これから続く夏の空を眺めつつ、ビールでも飲みながら、天の川とベガとアルタイルのことや、酔っぱらい達が送ったそんなメールのことを思い浮かべてみるのも、きっと風流で気持ち良いはずだ。星空の綺麗な高原で、あるいは星なんて見えないビル屋上のビアガーデンで。
2001-12-24[n年前へ]
■私と二度めに出会う「水」
クリスマスの小さな遺品
先日、こんなメールを頂いた。
私の娘は小学三年生。図書館から借りてきた「水の一生」といった、子供向け科学本(蛇口から出た水は下水を通って…<途中大幅に省略>…再度雨になって…というヤツです)を読んでおりました。そこで彼女はいくつかの疑問を口にしました。可愛い娘さんとお父さんの楽しそうな会話が伝わってくるメールである。「一度下水に流した水は、どのくらい経ったらまた私のところへ戻ってくるの?」さて、どう思われますか?
私 「必ずしもすべての水が海まで行くわけではなくて、下水処理場で蒸発して、川の取水口あたりで雨になる分子もあるはずだから、そうだなあ、一番早くて3日くらいかなあ。 勿論もっと長い場合もあるし、一度流したらキミが生きている間にはここには戻ってこない分子もあると思うよ」
「コップ一杯の水の中で、私と2度目に出会う水はどれくらいあるの?」私 「う〜ん… どれくらいなんだろう?」
ところで、この後半の疑問「コップ一杯の水の中で、私と2度目に出会う水はどれくらいあるの?」というのはたまに見かける話である。何かの小説で、「このコップの話が主人公が科学を志したきっかけになっている」という小道具に使われている例も読んだことがあるような気がする。
たまに見かける話ではあるのだけれど、同じ本を読んでも人それぞれ抱く感想は違うし、私なりにも考えてみたい気もしたので、今回はこの「コップ一杯の水の中で、私と2度目に出会う水はどれくらいあるの?」を考えてみることにした。
人が一日に「出会う」水はどの位の量だろうか?成人男子が安静にした状態で、一日当たり大体2.5リットルの水を消費するという。すると、小さい子供の場合でも、少なくとも一日2リットルくらいは水を消費する、つまり水と「出会って」そして「分かれる」ことになる。2リットルの水というと、2000gだから、これを水の1molあたりの重さ18g /molで割って、さらにアボガドロ数(1mol当たりの分子数)をかけてやると、(2l = 2000g ) / 18g x 6.022x1023個 = 6.7 x 1025個となり、私たちが一日に出会う水分子の数の個数がわかる。
この「とある一日に私たちが出会った水」が川へ流れて、海へ流れて、地球上にまんべんなく拡がったとしよう。地球上の限りなくある水の中に含まれる「とある一日に私たちが出会った水分子」の割合は、いったいどのくらいの程度になるのだろうか?
地球上の水は大体14億km3くらいだという。そのほとんどは96.5%は海水で、残りが陸地のさまざまな場所(そしてわずかに空気中)に存在している。この地球上にある水の重さを計算すると、14億km3= 1350000000km3 = 1.4 x 109 x 1012 kg= 1.4 x 1024 g ということになって、これを水の1molあたりの重さ18g /molで割ってやると、地球上に存在する水分子の総量は 1.4 x 1024/ 18 = 7.8 x 1022mol ということになる。mol数から水分子の量に直すために、アボガドロ数6.022x1023個/molをかけてやると、地球上の水分子の総量= 4.5 x 1046 個という数字が得られる。
すると、地球上の限りなくある水の中に含まれる「とある一日に私たちが出会った水分子」の割合は
「とある一日に私たちが出会った水分子」 / 地球上の水分子の総量 = 6.7x 1025個 / 4.5 x 1046 個 = 1.5 x 10-21= 0.00000000000000000015%というとても小さい割合になる。この割合は、新たに水分子と出会った時に、その水分子が「とある一日に私たちが出会った水」である確率と言い換えても良いだろう。とにかく、私たちの普段の生活の感覚からすれば、限りなく小さく思えてしまう。しかし、その再会の確率はとても小さく思えてしまうのだけれど、決して私たちは「とある一日に私たちが出会った水分子二度と水と再会しない」わけでは無いのである。
例えば、180mlのコップ一杯の水の中には( 180ml = 180g ) / 18g x 6.022x1023個= 6.0 x 1024個の水分子が含まれている。ということは、このコップ一杯に含まれる水分子の中にいる、かつて「とある一日に私たちが出会った水分子」の数を計算してみると、
コップ一杯に含まれる水分子の数 x 「とある一日に私たちが出会った水」である確率= 6.0 x 1024個 x 1.5 x 10-21 = 9000個ということになる。コップ一杯の水の中にはかつて「とある一日に私たちが出会った水」が一万個近くも存在していることになる。
しかも、この計算は「とある一日に私たちが出会った水分子」だけで計算していて、決して「これまでに私たちが出会った水分子」で計算しているわけではないのだから、「コップ一杯の水の中で、私と2度目に出会う水」はもっと多いことになる。もちろん、実際には私たちが消費した水が理想的に拡散したりはしないだろうから、こんな風に上手くはいかないだろうけれども。
とりあえず、「コップ一杯の水の中で、私と2度目に出会う水はどれくらいあるの?」という疑問を口にした小学校三年生の娘さんには、「ずっと昔のある日に出会った水がコップ一杯の中には一万個近くもあるかもね」と答えておくのが良いかもしれない。計算の中身、アボガドロ数なんて言っても、小学校三年生では「あぼがど?あぼがろど…?」と頭がこんがらがるだけかもしれないけれど、とりあえず「おとーさんって、何でもわかるんだー」とちょっとくらいは尊敬されたりするかもしれない。
そういえば、先日東京で初雪が降った。「雪は天から送られた手紙」とは中谷宇吉郎の残した名言だけど、その雪を見ながらこんなことを考えた。
ある日誰かが亡くなり、荼毘に付される。すると、その人の体のほとんどの部分は火と共に空へ昇っていくことだろう。成人の体のおよそ60%は水分だから、体重60kgの人であれば、その60%の36000gもの水が空へ還ってゆくことになる。その空へ還っていった水分子が世界中に散らばっていった後に、いつかまたその水分子と出会うためにはどの程度の水があれば良いだろうか?どの程度の水があれば、この中には「かつてあの人と共に空に帰っていった水分子」が一個くらいはある、と言えるものだろうか?
これを先程と同じように計算してみると、ほんのちょっと「1 x 10-3g」ほどの水があれば、その中には「かつてあの人と共に空に帰っていった水分子」が一個くらいある、という結果になる。「1x 10-3g」ということは、大きさで言うと1mm3ほどになる。ちょうど雨粒一滴と同じ位の大きさだ。空から降ってくる雨一粒の中には「かつて亡くなった人と共に空に帰っていった水分子」が1個が漂っている、ということになる。
冬の雪の一片の大きさが雨の一粒と同じくらいであるかは判らないけれど、今日のように何時の間にか雨が雪に変わることもあるくらいだから、やっぱり雪も雨と同じような大きさなのだろう。だとすれば、空から降ってくる雪の一片の中には、「かつて亡くなった人と共に空に帰っていった水分子」が1個宝石のように入っていてもおかしくはない。「雪は天から送られた手紙」であるならば、その中にはその手紙を天から送ってくる「かつて亡くなった人」のまるで遺品が1個づつ封じ込められているのである。「雪は天からの遺品」と言っても良いかもしれない。
間もなく、クリスマス。そして、クリスマスには白い雪が付き物だ。空から舞い降りてくる白い雪の中には大切な1個の水分子「クリスマスの小さな遺品」が入っているのである。
2003-07-20[n年前へ]
■二次元女子のサイズ辞典
アニメやゲームに登場する女子のみなさんの身長体重スリーサイズ辞典。簡単に内容をまとめた総合分析も面白いかも。あるいは、三次元世界のスリーサイズの見栄と現実 と比べ眺めてみるのも面白いかも。