hirax.net::Keywords::「供給」のブログ



1998-12-22[n年前へ]

殻付き卵の調理方法及び調理装置 

味付き卵の秘密


 私がよく楽しませてもらっている
Fast&Fast (http://www.cds.co.jp/ff/index.html)、
Kurikoma Island (http://www.snet.ne.jp/milk32/index.html)
というWEBページ中に「殻付きの味付き卵はどうやって作るのか」についての考察と実験がされていた。私の友人も妙に味付き卵について気にしていた。一体どうやってつくるものだろうか?もしも、先の2つのWEBページの味付き卵に関する実験を読んでいないならば、この下を読む前にまず見てきて欲しい。

 作り方を味付き卵を作っているメーカーに聞いてみたいが、企業秘密で教えてくれるわけもないだろう。そこで、ずるいようではあるが、特許を調べてみた。すると、公開特許公報の特開平9-271359に「殻付き卵の調理方法および調理方法」という名称の発明があった。

味付き卵の調理方法の特許

 この特許で説明されている技術は以下のようになる。

  1. 殻付き卵を密閉加圧釜1へ装填する。
  2. 釜内を3kgにエアー圧調して、循環液で90℃7分位ゆでる。
  3. 加圧排水後調味液タンクより冷却された調味液を供給し、15℃まで冷却し、循環させる。
  4. 終了後釜内圧力を大気圧へ戻す。
  5. 釜内を真空排気して調味液の浸漬工程を15℃、30分行なう。
  6. 釜内を大気圧に戻して、水を供給し、表面洗浄をする。
  7. 殺菌工程を90℃及び80℃の2回に分けて行なう。
  8. 加圧排水後大気圧に戻して、釜から取出す。
 また、この特許の中で説明されている「従来の技術」は
  1. ボイル槽による常圧のゆで工程
  2. 開放型調味液槽による常圧浸漬
 もしくは、
  1. ボイル槽による常圧のゆで工程
  2. 密閉型調味液槽による加圧浸漬
となっている。ここでいう「従来の技術」ならば、圧力鍋があればできそうである。実際Fast&Firstで行われていた実験はほぼこのやり方である。

 今回のこの特許によれば、少量の調味料でも濃い味付けをすることができると書いてあるが、本当かどうかはわからない。特許は必ずしも本当のことではないだろう。何しろDr.中松のような人もいる。

左が調理装置の全景、右が中心部の拡大図


 いつか、自分の家でも味付き卵の手料理に挑戦してみたいものだ。

2000-06-06[n年前へ]

パラレル・シリアル変換機作成準備 

PIC16F877を使う。5Vの電源供給はPS2ポートからにする予定。

2001-03-04[n年前へ]

柿ピーのシーソー・ゲーム 

柿とピーナツの供給バランスを考える

 結婚しようとするカップルが少しばかり気にした方がよいのが、「柿ピーの好み」である。知らない人がいるとは思えないが、念のために書いておこう。柿ピーと言えば、柿ピー= 柿の種 + ピーナッツであって、亀田製菓の大ヒット商品である。そして、何と言ってもビールの安上がりのおつまみだ。
 

いわゆるひとつの「柿ピー」

 この「安上がりで手軽なおつまみ」というところが、結婚しようとするカップルにはとても重要である。何故なら、結婚する前のカップルであれば洒落た店で飲むことも多いかもしれないが、結婚後はなかなかそうはいかない。いつの間にか手に持ったワイングラスは缶ビール(しかも発泡酒)に変〜身し、「テーブルの上の豪華な食事」はちゃぶ台の上の亀田製菓の柿ピーにバケラッタしているのである。

 そうなると、かつては「このソースとても美味しいよね。うふっ。」なんて言っていた二人も変わらざるをえない。そりゃそうだ。柿ピーを目の前にして、気取ってみてもしょうがないわけだ。そんな時、こんな会話に走りがちである。

「柿の種ばっか、食べないでよ!」
「オマエこそ、ピーナッツどんどん食えよ!」
そう、柿ピーがなまじ「柿の種 + ピーナッツ」なので、片方がどんどん減っていったりすると、これがもう大変。かつては、ワインを片手に愛を語らっていた二人も、今やビール(しかも実は発泡酒)を片手に食い物の奪い合いをすることになるのである。

 これが、カップルの二人がとても似たもの同士で、「私達二人とも柿の種がスゴ〜ク好きだから、ピーナッツなんかいらないの。だから、- 柿の種だけが100%入った柿の種 - を買うの!」なんて感じなら、もちろんノープロブレムだろうし、あるいは、「ぼくらは、ピーナッツだけを買うのさ!」という感じのカップルでも同様だろう。
 

そんな二人のための「柿の種だけが100%入った柿の種」

 あるいは、もう「ぼくは柿の種が好きだけど、きみはピーナッツが好き。二人は違っているから良い組み合わせなのさ。柿の種はぼくがどんどん食べるから、君はピーナッツをお食べ」なんてカップルでもいいだろう。こちらも、「ひとまずは」ノープロブレムである。つまりは、全く同じが正反対のカップルであれば、大抵の場合ほとんど問題はないのである。

 しかし、「柿ピーは柿の種とピーナッツが適当な割合で入っているから良いのさ」なんていうグルメ気取りのカップルがいたりすると、大変である。

「アンタの食べる割合、少しおかしくない?」
「何言ってんだよ!オマエの方が柿ピー食べ過ぎだってんだよ!」
「そんなことないわよ!」
となるのは必至である。この数分後には、巨人の星の一徹父ちゃんのごとく、ちゃぶ台はひっくり返されているのに違いないのである。柿ピーの割合恐るべしだ。

 そして、しかもこれが理系カップルともなれば、もう最低だ。

「柿とピーの割合は7:3で食べなさいよ!」
「違うだろ、6:4が適正値に決まってるだろ!」
「そんなにピーナッツを食べたいなら、柿ピーじゃなくてピー柿にしなさいよ!」
「別にピーナッツが過半数を超えるほどがイイって言ってんじゃねぇ〜!」
「何よ、もっと定量的に話しなさいよ!」
という具合になるに決まっているのだ。このままいくと、柿ピーを前にして離婚談義にもなりかねない。なんともオソロシイ話である。(* ピー柿は7:3でピーナツの方が多い。そんなのが実在することが私にとっては驚きである。)

 そういうわけで、「柿ピーの好み」「柿ピーの割合」「柿ピーの消費の割合」なんていうものは、結構結婚しようとするカップルには重要なのである。結婚しようとするカップルはぜひとも心して聞いておいてもらいたい。とはいえ、モテモテ度テスト

「女にモテない、というより、女に興味がないオマエ。今、一番気になることがドリキャスの値下げだったりなんかしない? まーそれも人生だけど、モテたほうがおいしいことは多いぜ? もうちょい女に関心持てよ。」
と判定された私が言っても説得力がないか。
 

 ところで、そもそも柿ピーの割合はどのくらいが普通なのだろうか?WEBで検索してみると、柿ピー10に対して

  • 柿の種 : 7〜6
  • ピーナッツ : 3〜4
が普通であるらしい。作っている方も、食べる方も結構ウルサ方が多いらしく、結構その割合について書いてあるサイトも多かった。

 そこで、試しに私も手元にあった小袋入り亀田の柿ピーの中身を調べてみた。調べたのは「小袋入り亀田の柿ピー」である。
 

小袋入り亀田の柿ピー

 この一袋の中身を開けてみると大体こんな感じである。
 

一袋に入っていた柿ピー

 もちろん、単に数えても良いわけではあるが、「クダラナイことに、無意味なほどに大ゲサな道具を使うのがこのサイトのポリシー」でもあったりするので、まずは画像処理ソフトを使って柿の種とピーナッツの個数をカウントしてみた。使ったソフトはUTHSCSAImageTool である。PCベースでフリーでお手軽で粒子カウントとなるとこのソフトになるだろう。もちろんNIH-imageベースのScionImagePCという選択肢もないわけではないが、こと粒子カウントになるとはるかにImageToolの方が使いやすい。マクロの取っつきやすさ(機能は較べものにならないほどおちるが)もNIH-image系よりも上である。

 さて、まずは上の画面内で柿の種を粒子カウントしてみたのが次の画面だ。この画面では見つかった柿の種は赤い縁取りがされ、個数がマーキングされていることがわかると思う。ちなみに、この画面内では93個の柿の種が見つかった。しつこいようだが、「数えた方が早いだろっ!」というツッコミはこの「できるかな?」では厳禁である。
 

柿の種は大体100個
ちなみにこの画面では93個

 同じようにして、ピーナッツをカウントしてみたのが次の画面である。この画面では、ピーナッツは23個見つかった。
 

ピーナッツは大体20個
ちなみにこの画面では23個だった

 すると、個数ベースでピーナッツが23/(93+23) = 20%で、残りが柿の種で80%ということになる。柿ピーの割合は大体8:2であったことになる。確か、WEBの亀田製菓に関する情報では

「柿ピー」のブレンドは、柿の種6に対してピーナッツ4が基本
と書いてあったような気がするので、今回の8:2というデータは測定誤差、とその他の何らかの誤差が重なったものだろう。いや、そんな誤差はどうでも良いか。
 

 ところで、大きな袋に入った柿ピーを食べながらよく考えることがある。私は柿の種が大好きなので、柿の種ばっかり選んで食べていくと、袋の口近くの上の方にはピーナッツばかりが残り、明らかに袋の場所ごとに柿の種とピーナッツの割合が異なってしまっていることがよくある。この柿の種とピーナッツの割合の時間的・空間的変化は一体どうなっているものだろうか?そこで、今回その「ピーナッツの柿ピーに占める割合の時間・空間的変化」について、少し考えてみることにした。
 

 まずは簡単に判るように、袋の中から均等に柿の種とピーナッツを「柿ピーの割合を適当な割合で」食べていった場合、「ピーナッツの柿ピーに占める割合」は次の図のようになる。この図は横軸が時間で、縦軸がピーナッツの柿ピーに占める割合である。
 

ピーナッツの柿ピーに占める割合の時間的変化
青 : 柿ピーを8:2の割合で食べた場合
緑 : 柿ピーを8:3の割合で食べた場合

 今回の場合柿ピーは8:2で入っているので、青の場合のように柿ピーを8:2の割合で食べていくと、時間にして10分後に柿ピーがなくなるまで、ピーナッツの柿ピーに占める割合は20%をキープしたままである。しかし、(少しばかりピーナッツが好きな人が)柿ピーを8:3の割合で食べてしまうと、つまりピーナッツを過剰に食べてしまうと、どんどんピーナッツの割合は減ってしまい、ついに8分経過後にはピーナッツが袋の中から無くなってしまうのである。つまり、あとの2分は悲しみと共に柿の種を食べ続けなければならないのである(私は柿の種が好きなので悲しくもなんともないが)。

 じゃぁ、袋の中の空間的分布も考えてみたらどうなるか、というのを次に計算してみた。まずは、袋を大きく二つに分けて、袋の入り口で適当な割合で柿ピーを食べた後、袋の奥から袋の入り口の方へ柿ピーを持ってくる。また、その際に適度に柿ピーをかき混ぜる。そして、柿ピーがなくなるまで柿ピーの割合の変化を調べてみるのである。ちなみに、IE4以降+Excel2000以降?の人であれば、ここをクリックすれば、その計算シートで遊ぶことができると思う。

 例えば、「柿ピーを8:2の割合で食べた場合」と「柿ピーを8:5の割合で食べた場合」のピーナッツの柿ピーに占める割合の時間・空間的変化を調べてみたのが、次に示す結果である。ちなみに、このいずれも横軸は時間である。また、時間軸にして30前後の時点で柿ピーは完全になくなっている。
 

ピーナッツの柿ピーに占める割合の時間・空間的変化
左 : 柿ピーを8:2の割合で食べた場合   右 : 柿ピーを8:5の割合で食べた場合

ちょっと計算上の誤差が大きいが、それはちょっと無視してもらいたい。

 さて、左の「柿ピーを8:2の割合で食べた場合」、つまり本来の柿ピー比と同じ割合で食べていった場合には、入り口近くでも奥の方でも柿ピーの比率は変わらない。そして、入り口の方から柿ピーを取った分を、奥の方から補給しているので、奥の方では時間軸20の時点で空になってしまっている。左の図でピーナツの割合がゼロになっているように見えるのは、実は単に柿ピーがなくなっただけなのである。そして、入り口近くの柿ピーが時間軸30の時点で空になっているまで、柿ピーの比率は変わることはない。当たり前だ。

 では、「柿ピーを8:5の割合で食べた場合」はどうだろうか?つまり、本来の割合よりもピーナッツを多く食べがちな人の場合だ。そんな場合の右を見てみると、奥の方は単に入り口近くに柿ピーを補給しているだけなので、柿ピーの割合は変わらないままだ。しかし、入り口近くではあっという間にピーナッツの割合が減ってしまっている。ほとんどなくなっている、といっても良いくらいの状態である。つまり、ピーナッツ大好き人間にとっては、手の届く袋の入り口近くには全然ピーナッツがないという、拷問状態なのである。周りに女子校や共学の学校はあるけど、自分の通う学校が男子校だったみたいなキツイ状態である。ちなみに、私は高校時代に私服の共学の学校に通った結果、制服の女子高生に強い強い憧れを抱くに至ったことを否定できなかったりするのである。
 

 話を戻して、それでは「袋を適当にかき混ぜながら」、「柿ピーを8:5の割合で食べた場合」はどうなるだろうか?というのが次の結果である。こうすると、奥の方のピーナッツもどんどん消費されているのがわかる。入り口近くも奥の方も、同じようにどんどんピーナッツの割合がどんどん減ってしまい、時間軸15の時点で完全になくなってしまっている。あとは柿の種がなくなる時間軸30の時点まではもう柿の種と向かい合うだけの人生なのである。ツラすぎる(ピーナッツ好きの人にとっては)。私の知人のオッパイ星人が結婚後に妻から、

「アンタはもう貧乳とだけ向き合う人生なのよ。」
と言われ、涙をこぼしていたのを連想させるような「柿の種人生」が待っているのである。

*一部、不適当な発言がありましたことをお詫びします。
 

「袋を適当にかき混ぜながら」、「柿ピーを8:5の割合で食べた場合」
柿ピーの袋の奥の方でも入り口近くでもピーナッツがすぐになくなっていく

 つまりは、ピーナッツが食べたいからといって、あまり柿ピーの袋をかき混ぜるのは良くないということなのである。もちろん、短期的にはピーナッツがたくさん食べることができて良いわけであるが、長期的に見ればその後の長い「柿の種人生」が待っているのである。それが端的にわかるのが、次の「ピーナッツをどれだけ食べているか」を示す結果である。

 この結果の中で、上の方に示した「柿ピーの袋をかき混ぜない場合」では、結構最後までピーナッツを細々と食べていけることがわかるだろう。柿ピーがなくなるのが時間軸で30前後の時点であるが、その少し前23位の時点までピーナッツを食べていけるのである。それに対して、ピーナッツを早く食べたいばかりに、柿ピーの袋をかき混ぜまくりの下の「柿ピーの袋をかき混ぜた場合」には、時間軸で13前後の時点でもうピーナッツがなくなってしまっている。もう、コイツには「柿の種人生」しか残されていないのである。
 

「ピーナッツをどれだけ食べているか」の時間変化
横軸 : 時間、 縦軸 : ピーナッツの消費数
 

柿ピーの袋をかき混ぜない場合

結構最後までピーナッツを細々と食べていける


 
 

柿ピーの袋をかき混ぜた場合

なんとも、太く短くのピーナッツの食べ方である…


 

 とはいえ、柿ピーの袋をかき混ぜながら太く短くピーナッツを食べるか、それをじっとガマンの子で細々と最後までピーナッツを食べるか、どっちが良いかは難しいところだ。ちなみに、私はかき混ぜまくりで柿の種を食いまくり、残ったピーナッツは人にプレゼントするというとても良い性格である。だったら、100%柿の種を買えって感じであるが、売店には置いてないことも多いから、しょうがないのである。
 

 というわけで、今回はビール(やっぱりあくまで発泡酒)を左手にそして柿ピーを右手でつまみながら、酔っぱらった頭で(いつものことだが)、ツマラナイことを考えてみた。モノが本当の柿の種であればオチて芽が出るのが普通なのだけれど、今回の柿ピーの話はオチがあるわけでも芽が出るわけでもない。酔っぱらいのタワゴトだから意味なんか全然ないのである。と、日記には書いておこう(意味不明)。
 

2001-08-07[n年前へ]

「ボケ」た背景で包み込め 

デジカメ画像をキレイにボカそう アルゴリズム編

 最近、新しいデジカメを物色中である。私はこれまではFinePix4700zを使っていたのだけど、そのFinePixが半年程度で壊れてしまった。というわけで、C-4040ZOOMがどんなものか期待しているところである。

 壊れたFinePixと言えば、そもそも壊れたFinePixは一台ではなかった。私はすでにFinePixを二台も買っているのだ。そして、もうすでに二台とも壊れてしまっているのである。連続殺人事件ならぬ、連続カメラ自殺事件なのである。

 まず、一台目に買ったFinePix700ははメキシコのティファナでポケットから落としたら、バッテリーから電源が供給されなくなった。もちろん、ACアダプターを使えば立派に動くのだけれど、それでは少しばかり機動性に欠けてしまう。まさか発電機を持ち歩くわけにはいかないし、コンセントの近くでしか撮影することができないとなると、それは非常に困ってしまう。そこで、すかさず二代目としてFinePix4700zを私は買った。ところが、買ってから半年位たったある日、今度は勤務先の駐車場でポケットから落としてしまった。すると、今度はファインダー視野がズームに連動しなくなって、なおかつレンズがまるでジョイスティックのようにあらゆる方向に曲がるようになってしまった。

 こんな風にデジカメはとっても壊れやすくて、半年毎にデジカメ出費を強いられる私に周囲は「落としたオマエが悪い」と非常に冷たいのである。残念なのだ。「そういうのは壊れたんじゃなくて、壊したんだ」と被害者である私をまるで加害者のように告発する人さえいるのである。連続カメラ自殺事件は実は他殺で、しかも犯人は私だと告発する輩さえいるのだ。ひどい話である。
 

 ところで、C-4040に期待しているのは、コンパクトで、レンズアダプターが使えて、レンズがF1.8と明るいことなのである。コンパクトなのは持ち歩くために必要だし、私はなんと言っても超広角デジカメが欲しいのだが、そんなデジカメはないので、ワイドコンバーターを付けたいのでレンズアダプターが必要なのである。明るいレンズの方は、うす暗い中でも撮影する時に重宝しそうなので、少し期待しているのである。
 

 ところで、この位明るいレンズであれば、もう少しぼかすことができるものだろうか?デジカメで写真を撮ってもどうしてもボケない。35mmフィルムを使っているカメラなどと比べるともう全然ボケない。もうほんとにボケない。

 例えば、35mmカメラで135mm F4.5開放のレンズなら、ピントの合ってない背景はこの位はボケる。これは京都の哲学の道近くにある吉田山で撮った写真だ。
 

35mmカメラで撮影した例 135mm F4.5?

 

 ピントが合っている位置以外は光がボケて、キレイなボケが発生する。どちらの写真も絞りは開放で撮影しているので、後ろの風景はほぼ丸くボケている。ぼかせばキレイというわけではないけれど、背景などがごちゃごちゃしている中で対象物だけを浮き上がらせたい場合には、「ボケ」させるととても良い感じになる。
 

 しかし、デジカメではそうそう簡単にボケた画像を撮影することはできない。35mmフィルムに比べて、CCDサイズが小さいからである。35mmカメラよりAPSカメラはもっとぼけなくて、それよりデジカメはさらにボケないのである。そんな様子を見るために、二台目として買ったFinePix4700zで「ボケ」を意識して撮影してみたものが下の写真である。手前の植物にピントが合って、奥の道の先はボケてはいるのだけれど、それでも先程の写真などとは比べものにならないほどわずかしかボケていない。
 

在りし日のFinePix4700zで「ボケ」を意識して撮影してみた写真
(昼過ぎの箱根山中で)

 ところで、このような画像の「ボケ」を考えるとき、「ボケ」た画像をシャープに復元しようという話は非常にポピュラーな話題である。例えば、本「できるかな?」でもこれまでに

といった感じで遊んできた。また、さらには「恋の形」を復元しようとしたとか、このようなアプローチを遥か昔に考えていた漱石の「文学論」を振り返ってみたりしたきたのである。しかし、これらはいずれも「ボケたデータを復元する」という問題であった。

 一方、この逆のアプローチである「シャープなデータをボケたデータにする」という問題も結構ポピュラーである。例えば、音楽をホールやライブハウス風にボケた音にするDSPはかなりの数のオーディオ装置に付けられている。これも、もともとはシャープな音声データが部屋の中でボケていく様子をシミュレートする回路である。また、画像に関する話題でも、ピント位置をずらした複数の画像から任意の「ボケ」画像を作成するといった話題もたまに見かける。

 そこで、「できるかな?」でもデジカメ画像を35mmカメラ風にキレイにぼかすことに挑戦してみることにした。今回は、まずはアルゴリズムを確認して、次回以降で簡単プログラムを作成してみることにしたい。

 まずは、似たようなソフトウェアがあるかどうか、Googleで適当なキーワードを使って検索をかけてみると、IrisFilter(http://www.reiji.net/iris/)というソフトウェアがあった。これは、「写真のぴんぼけを再現する」というフィルターだった。サンプル写真などを見てみると、これがなかなかきれいだった。例えば、早朝の御殿場の路上を「在りし日のFinePix4700z」で撮影した写真にこのフィルタをかけて、「ボケ」を加えてみたのが下の画像である。
 

Iris Filterでデジカメ画像を「ボケ」させたもの
オリジナル画像
Iris Filterで処理したもの

 ここではこんな六角形の絞り形状をを用いてみた。右の処理画像中の、車のテールランプや車の下部を眺めてみると、鋭いハイライト部が六角形に光っているのがわかだろう。確かに、「ボケ」がカメラの絞り形状になっていて、良い感じである。

 WEBページの記載によれば、このIris Filterは「フィルム特性曲線を利用し、レンズから通った光がフィルムを感光させる様子を再現しています」ということである。なんでも、特許も国内・USP共に出願済みということだが、特願2000-100042もU.S.PTO 09/772532も未だ公開にはなっていないようで、残念ながら特許の内容を読むことはできなない。

 このWEBページの記述の中で面白いのは、「データ上の数値をそのまま拡散させる従来のPhotoshopをはじめとした画像処理ソフトと違い、実際のフィルムに当たる光の量(露光量)を逆算し、その露光量をもってピントがずれている様子を再現します」という歌い文句でPhotoshopの「ガウスぼかし」と比較広告してある部分である。

 試しに、先の画像をIris Filterで「ボケ」を加えた画像と、Photoshopの「ガウスぼかし」とで「ボケ」を加えた画像を比較してみると、下の二枚の画像のようになる。確かにIrisFilterの売り文句通り、こうして比較してみるとPhotoshopガウスぼかしが写真の「ボケ」っぽくないのに対して、IrisFilterの「ボケ」が写真のそれっぽいことが良くわかる。
 

Iris Filterの処理画像(左)とPhotoshop ガウスぼかしで処理した画像(右)の比較
Iris Filterで処理したもの
Photoshop ガウスぼかしで処理したもの

 さて、お仕着せのソフトを使ってみるだけではなくて、自分でデジカメ画像をキレイに「ボケ」させてみることにしたい。というわけで、hirax.net風「ボケ」フィルターの動作を考えてみる。

 まずは、毎度のことだがオリジナル画像が「ボケ」る様子を計算する式は

逆フーリエ変換(  フーリエ変換( オリジナル画像 ) x フーリエ変換(ボケ具合 ) )
と表すことができる。詳しくは、「宇宙人はどこにいる?」の回でも読んでもらうことにして、簡単に言えば周波数領域でオリジナル画像とボケ具合を掛け算をしさえすれば良いのである。つまり、今回のデジカメ画像をぼかす場合だったら、
  1. デジカメ画像と「ボケ」具合をそれぞれフーリエ変換し周波数空間に変換
  2. 周波数空間で乗算を行う
  3. 逆フーリエ変換して実空間に戻す
とハイ!「ボケ」画像の出来上がり、というわけである。ボケ具合が小さい場合などは、このやり方よりもずっと計算量の小さいやり方はあるわけだけれど、とりあえずこのやり方はとても単純明解なので今回のように試しでやってみるにはとっても楽な方法なのである。また、ここでいうボケ具合というのは、こんな形状の「ボケ」具合のことである。
 

 じゃぁ、早速やってみようとなるわけだが、その前にもう一つ注意することがある。それは、RGB画像の数値というものは実は元々「明るさを対数変換した値」であるということなのである。人間の目も含めて世の中の大抵の材料は対数的な感度を持っている。例えば、人間の目に「2倍明るい」という場合に、光は「2倍明るい」というわけではない。その場合には指数的にX^2倍明るいのである(ここで、xの値はそれぞれのデバイスによって色々と違う)。その明るさをRGB画像の数値データにする時に、明るさの対数をとってLog[x,X^2]で2という数値として表しているわけだ。

 RGB画像の数値が「明るさを対数変換した値」だというようすの一例を示すと下の図のようになる。
 

RGB画像の数値というものは実は元々「明るさを対数変換した値」である
片対数軸で表した
横軸 = 0〜255の数値データ
縦軸 = エネルギー
線形軸で表した
横軸 = 0〜255の数値データ
縦軸 = エネルギー

 逆に明るさからRGB画像の数値データへの変換グラフは例えばこんな感じである。RGB数値で200と255と言っても実はその明るさは大違いであることがわかると思う。
 

 

 だから、この手の処理を行う際には、まずは指数変換してから処理を行い、そしてその後対数変換してやらなければならないわけだ。もちろん、今回のデジカメ画像をぼかす場合にも、RGB画像の数値をまずは指数変換した後、「ボケ」演算を行って、その演算結果を対数変換でRGB画像の数値に戻してやらなければならないのである。といっても、別に難しい話ではなくて画像を扱う装置だとごく当り前の話だ。

 そう、「ボケ」演算のhirax.net風レシピはたったこれだけ〜というわけで、早速このレシピに従ってhirax.net風デジカメ「ボケ」フィルターをかけてみたのが下の画像である。キレイな「ボケ」画像ができあがっていることが判ると思う。
 

hirax.net風デジカメ「ボケ」フィルター
キレイな「ボケ」画像のできあがり〜

 ところで、デジカメ画像のRGB画像の数値を指数変換したものに「ボケ」演算を行ったわけだけれど、もしRGB画像の数値そのものに対して「ボケ」演算を行ったら、どんな結果になるだろうか?つまり、「データ上の数値をそのまま拡散させる」やり方をしたら、どうなるのだろうか?そこで、試しにRGB画像の数値そのものに対して「ボケ」演算を行ってみるとこんな結果になる。
 

RGB画像の数値そのものに対して「ボケ」演算を行ってみた結果
キレイじゃない…

 何だかボンヤリとにじんだだけの「キレイじゃない」写真になってしまっている。それは、当り前である。本来2倍明るいものはX^2倍明るいわけで、すごく光の量は2倍どころでなく多いわけだ。それが広がる量を仮にRGB数値そのまま2倍として扱ってしまうと、その光の部分は薄暗くなってしまう。コントラストのはっきりしない、ぼんやりとした写真になってしまうわけだ。ちゃんと、X^2倍のデータとして扱ってやらなければならないわけである。

試しに、指数処理したものと線形処理をしたものとを並べてみるとその画像の違いがよくわかるだろう。
 

指数処理した画像(左)と線形処理をした画像(右)の比較
hirax.netレシピの
キレイなボケ画像(指数処理)
 

キレイじゃないボケ画像(線形処理)

 さて、今回はデジカメ画像の「ボケ」フィルターのhirax.net風レシピを確認してみた。次回(と言ってもいつになるか…)以降に、このレシピに従って実際にソフトを作成していこうと思う。
 

 ところで、「文学論」の中で漱石は「ボケ」は焦点的印象又は観念に付随する情緒を意味する、と言っている。それは、言い換えれば「何かの出来事をきっかけとして感じた怒り・悲しみ・喜びなどの感情がボケである」ということだ。そして、さらに言えば、写真で背景をぼかすということは、つまり「背景にある出来事が生みだした怒り・悲しみ・喜びを広く混ぜて包み込む」ということなのである。

 だから、何かを撮影する時に対象物の背景をぼかすということは、「背景にある出来事が生みだした怒り・悲しみ・喜びを広く混ぜて対象物を包み込んで、そして対象物を浮き上がらせる」ということなのかなぁ、とぼんやりと考えてみたりする。そんな写真は対象物を写しこんでいるのと同時に、それを包みこむ背景も写しこんでいるンだろうなぁ、と考えてみたりする。
 

2007-07-06[n年前へ]

「物語」と「市場経済」 

 現代は大衆民主主義と資本主義と科学技術の時代である。人々は原則平等という権利と引き替えに、細かい差異化過程に巻き込まれ序列化されることを余儀なくされる。

科学とオカルト 」P.7 はじめに
 「科学とオカルト(池田清彦 講談社学術文庫)」は科学という積み木と隣り合うオカルトという積み木の姿を描く。そして、それと同時にこの本が描くのは、科学だけでなく資本主義と大衆民主主義という積み木とも隣接するオカルトの姿でもある。

 本屋に置いてある雑誌や駅に置いてあるフリーペーパーを眺めてみれば、たくさんのファッション・スタイルや数限りないグルメスポットが掲載されている。そんなたくさんの選択肢から自分なりのものを選んで自分に振りかけてみても、他人と自分の違いは、スターバックスで注文するコーヒーかホットドッグのトッピング程度の違いしかないことだって多い。

 宗教という大きな公共性も身分制という規範も存在しない現代では、自分が何者なのかということを教えてくれるものは何もない。唯一、最大の公共性であり科学は、そういう問いには原理的に答えることができない。

科学とオカルト 」P.148 現代オカルトは科学の鏡である
 元サッカー日本代表の中田英寿は「自分探しの旅」へと出かけてしまい、須藤元気は格闘技のリングから「スピリチュアルな世界」へと舞台を変えた。「僕って何」という問いかけをする「一見さんに対し」、ほとんど全てのものが明確な答えを与えることはしないように、科学が一見さんが抱えるその問いに答えることはない。

 お客様は神様です。  三波春夫
 「お客様は神様です」という言葉とともに、スーパーにはたくさんのものが並び、私たちは自分が持っているお金の範囲で自由に商品を選ぶことができる。現代社会は、お金を持っている限り有効の神様チケットを持った人で満ちあふれている。それと同時に、そんな神様たちは「選択」という価格の付けられたチケットを持ってはいるけれども、選択に迷いがちで自分を見つけられない存在でもある。
 幸か不幸か、社会はこの現実社会にはないものを物語という形で流布する。「かけがえのない私」というのも、こういった物語の一つである。

科学とオカルト 」P.149 現代オカルトは科学の鏡である
 消費者が望むものを誰かが生産する。需要のあるところには、必ず供給が生まれる。科学が生産できないものを現代の消費者が望むなら、そこには、必ず別の供給者が現れる。それが自由市場主義で動く現代社会なのだろう。消費者という神様は欲しいものに応じ、時には科学を選び、時にオカルトを選ぶのである。お客様という神様たちと、そんな神様たちの欲望に応える供給者が作り出していくのが、21世紀の世界なのだろうか。
(「科学とオカルト」を書いた)池田の著書は、自分で考えるとはどういうことか、結局はそれを教えてくれる本なのである。

養老孟司
 



■Powered by yagm.net