hirax.net::Keywords::「錐体」のブログ



1999-12-12[n年前へ]

色覚モドキソフトを作る(色弱と色空間その4) 

五十歩百歩

  まず、先に書いておこう。今回は、

で作成したTrueColorと似たようなプログラムを作成してみたい。何しろ関係ない話が以降、長々と続くからである。

  昔から、科学者は「色」というキーワードに強く惹かれている、と思う。そんなことを私が思うまでもなく、量子色力学(quatumchromodynamics)、色つき空間群(Color-symmetry)等のキーワードにその事実は現れている。これらの言葉は普通に使われる「色」という言葉とは違う性質を表すものである。しかし、科学者が「色」というものを基本的なものであると感じているために、どんなものが対象でも、「性質」の代表的なものとして、「色」という言葉が連想されるのだろう。

  私は学生時代の量子力学の授業のおかげで、「色」という言葉を聞くと今でも眠くなってしまうのである。何しろ、私の通う理学部の教室の横は農学部の畑だったのだ。教授の声と共に「モゥーーー」という牛の鳴き声が聞こえてくるのだ。教授の声と牛の鳴き声が絶妙のハーモニーとなるのである。ただでさえ眠くなるのに、そのハーモニーはクロロホルムもビックリの睡眠作用を発揮するのだ。私はそのハーモニーのおかげで何回も記憶を飛ばされた。
また、その牛達のおかげで、授業の中で「匂い」と聞いたりすると、牛の糞の「匂い」しか連想できないのである。困ったものである。あの農学部の畑がなければ、もしかしたら私は量子力学を好きになっていたかもしれない。そして、量子力学を極めていたかもしれないのだ...簡単に言えば私は量子力学の授業では落ちこぼれてしまったわけだ。

  ところで、昔の科学者達を考えると、「色」に関わらなかった人を探すほうが逆に難しいように思う。ニュートン、マクスウェル、ヤング、ヘルムホルツなどが代表的である。当たり前である。物理・化学に関わらず、「光」には関わらざるを得ない。当たり前である。さまざまな計測を行ったり、エネルギーを考えたりする上で光は最も重要なモノである。
 そして、「色」というものは「光」の大きな性質の一つである。しかも、それは「科学者自身にとっても」目に見える性質である。目に見えるものを無視する科学者は少ないと思われるので、科学者が「色」に関わらないわけにはいかないのだ。

  割に最近の科学者でも、意外な分野の人が「色そのもの」の研究をしていることがある。例えば、シュレディンガーなども色空間の提唱をしていたらしい。確かに、量子力学から色空間へはつながりを感じないこともないのではあるが、少し意外でもある。そのシュレディンガーが提唱した色空間がどのようなものであるのか、私は残念ながら知らないのだが、波動を深く研究していたシュレディンガーが提唱する色空間というのは非常に興味のあるところである。また、化学。物理学者であるダルトンは自らも色弱であるため、特にその辺りのことを研究し、報告している。

  さて、そのダルトンをinfoseekで検索してみると、

というページを見かけた。ここに、色覚バランスチェック用の図があった。昔、身体検査でやったことがあるような図である。こういった、図が人によってどのように見えるかは非常に興味があるし、気にかかるところでもある。
 もちろん、WEBページは会社の心(色弱と色空間 その2) - WEBページのカラーを考える 3 - (1999.08.10)で作成したTrueColorも同じような目的のために作成したものであるが、あれはあまりにも大雑把なモノだったので、作り直してみたいのである。なお、今回は画像のRGBとL、M、S錐体の反応の間の変換は
画像のRGBとL、M、S錐体の反応の間の変換マトリクス
左=RGB2LMS、右=LMS2RGB
という変換マトリクスを用いている。

  そこで、こういったWEB上の画像を読み込んで、

でやったL,M,Sの各錐体の感度が低いときの色覚シミュレーションを行うソフトを作成してみた。ソフトはこれである。前回と同じく、Susieプラグインを用いて画像を読み込んでいるので、「Susieの部屋」などから、Susie本体・あるいはプラグインを入手する必要がある。
 また、手間を惜しんだためProxy対応にはしていない。さて、動作画面サンプルを以下に示す。初期状態ではから画像を読み込むようになっている。もちろん、他のURLからも画像を読み込むことが可能である。画面左の三本のスライダーで各錐体の感度を調整できる。
truecolor2.exeを実行した画面

  この画面例では各錐体の感度は全て100%になっている。

  それでは、以下に適当に錐体の感度パラメータを変化させた場合のサンプルを示してみる。

truecolor2.exeで錐体の感度パラメータを変化させた場合のサンプル

  こうしてみると、これまで見てきたものとは違う数字が浮かび上がることがわかる。89,52などである。こういう仕組みを用いたのが、石原式などの色覚検査のやり方である。つまりは、異なる色を識別できないこと、すなわち、混同色を用いているのである。混同色を用いて文字を描くことにより、色弱であるかどうかを判断しようとするものだ。

  さて、こういった書き方をすると、色を混同してしまうのが色弱の人だけと勘違いされてしまいそうであるが、そんなことはない。全ての人が「色を混同してしまう」のである。どんな人でも、異なる波長の光であっても、例えばRGBなどの(多くても)三色を混合すれば同じ色に見えてしまう。つまりは、混同色だらけなのである。健常者と呼ばれるヒトも色弱と呼ばれるヒトもたかだか数種類の錐体を持つにすぎない。
 色々な光の波長分布を認識できる生物がいたとすると、彼らがからすればヒトは全て色弱ということになるのだろう。つまりは、五十歩百歩といったところなのかな、と思うのである。

2000-10-25[n年前へ]

虹の彼方に。 

色覚モドキソフトを作る その7

 今年は好きなWEBサイトがいくつも店じまいしてしまった。「わきめも」もそんなサイトの一つだ。その今はもうない「わきめも」の中で、
 きれいな虹が見えた。だからビールを飲んだ。だけど、目に見えている虹の色は写真のフィルムには写らない。どんなフィルム・CRT・プリンターの出力色空間もとても狭くて、虹の中に見える色は出せないからだ。ビールも虹も「生」に限る。
という話があった。もう元のWEBページがあるわけじゃないから、細かいところは違っていたかもしれないけれど、大雑把な内容はこんな感じだった。- ビールも虹も「生」に限る - なんてとてもシブイセリフで良い感じだ。
 

 このセリフの中の「どんなフィルム・CRT・プリンターの出力色空間もとても狭くて、虹の中に見える色は出せないからだ。」というのを図示してみると、下の図のようになる。
 

 

 例えば、虹の中に見えるスペクトル色はこの図で言うと、黄色の矢印で描いた側の、色で塗りつぶした領域の外枠の色だ。波長の長い単色光、つまり最初は赤色から始まって、波長が短くなるに従い「赤→黄色→緑→青→紫」というようにスペクトル色はつながっている。

 この図中に、とあるCRTとプリンターの出力可能な色空間(CCMファイル中に埋め込まれているプロファイル情報を参考にしたもの)を白点線と白実線で示したが、とても狭い領域の色しか出せず、とてもじゃないが虹の中に見えるスペクトル色はこれらの機器では出ないことが判るだろう。

 だから、「生」の虹を見たときの感じは写真でもCRTでもプリンターの出力でも味わえないわけだ。おいしいビールは「生」に限る(私の趣味では)のと同じく、虹も「生」に限るのだ。
 

 だから、虹の色と同じ

の時に撮影したような太陽光のスペクトルも、こんな風にWEBページの上で眺めても、それはやっぱり分光器を「生」で覗いている感じはとてもじゃないが味わえない。
 
太陽光のスペクトル

 こんな、「赤→黄色→緑→青→紫」というスペクトル色を眺めていると、中学の頃の美術の授業を思い出した。その授業の中で、こんな色相環が教科書か何かに載っていて、「こんな色のつながりは「赤→黄色→緑→青→紫」というスペクトル色に対応しているんだよ」と美術の先生に言われた。それを聞いていた私はよく判らなくなって、「すると、何で紫と赤のところで繋がってるのでしょうか??」と先生に聞くと、その先生も「う〜ん。」と悩み始め、しまいには「いつか調べて答えが判ったら、私にも教えてくれたまえ。」と言うのである。今考えてみると、それはとても素晴らしい言葉だった(間違っても皮肉でなくて、本当に素晴らしいと思うのだ)。
 

色相環

色覚のメカニズム 内川恵二 朝倉書店 口絵より

 だけど、「赤→黄色→緑→青→紫」という単色光のスペクトルが波長としては単に一方向に変化していくだけなのに、グルっと一周する感覚を受けるのはとても不思議である。そこで、色感覚モドキソフトを作ってそこらへんの感覚を眺めてみる、つまり「できるかな?」の常套手段である「その謎を見てみよう」と思うのである。

 この「色感覚モドキソフト」はいつものように極めて大雑把でチャチな作りである。ソフトの流れとしては次に示すように、

1.光源としては二種類の場合
    • RGBのCRTモニタ
    • 単色スペクトル光
    を考える。そして、RGBのCRTモニタのRGBそれぞれのスペクトルを設定する。次に、RGBのCRTモニタを使用する場合には、以下の作業を行う。

    2.画像を読み込み、画像の任意の場所のRGB値を元に光全体としてのスペクトルを計算する。

    3.錐体の分光感度を適当に設定し、Boynton色覚モデルをもとに

      「赤<->緑」チャンネル
      「青<->黄」チャンネル
      「輝度」チャンネル
    のそれぞれの応答値を計算する。
という感じになっている。自分自身でいじることのできるパラメーターはRGBそれぞれのスペクトルと錐体の分光感度である。少し前に「からーふぃくしょん」のwebmasterと話している時に、錐体の分光感度が違う場合には、その違いに応じた「自然な色のつながり」があるんじゃないか、という話になったことがあったので、今回はそれを考慮して錐体の分光感度を自分でいじれるようにしてみた。

 ここに今回作成したtruecolor7を置いておく。細かい使い方は今回は割愛したい。が、多分少し使えば(使う人がいるともそうそう思えないが)、使い方はすぐに判ると思う。

いつものようにα版なのは言うまでもない。

 truecolor7の動作画面はこんな感じである。
 

truecolor7の動作画面

 左上から下に向かって、RGBそれぞれのスペクトル設定、全体でのスペクトル、読み込んだ画像、右上から、錐体の分光感度、反対色応答の出力値である。

 画像の任意の場所を調べたければ、BMP画像を読み込んでマウスで好きな場所をなぞるなり、クリックすればよいし、「赤→黄色→緑→青→紫」という単色光のスペクトル色の場合を計算したければ、右下にある「SpectrumColor」ボタンを押せば良い。

 さっそく、赤→黄色→緑→青→紫というスペクトル色の反対色応答「モドキ」を見てみたのが次のグラフである。縦軸が「輝度チャンネル」で、向かって左の軸が「青<->黄」チャンネルで、向かって右の軸が「赤<->緑」チャンネルである。この「輝度チャンネル」・「青<->黄」・「赤<->緑」という「感覚的」3次元空間で波長が一方向に変化するスペクトル色を連続的にプロットしてみると、見事に円状につながっていることが判る。「赤<->緑」チャンネルの計算が基本的にはL錐体出力からM錐体出力の差分をとって、さらにS錐体の出力をほんの少しだけ引いてやるという計算をしているため、短波長側でL錐体の感度がM錐体の感度を上回っている(ように実は設定した)のでこんな風になるのだ。単純に波長が短くなるだけなのに、見た感じ何故か紫と赤が近く見える。あくまで、大雑把な話だけれど。

 中学の頃の私がこれで納得するとは思えないが、少なくとも今の私はこの円環構造を目にすることができればこれで満足である。
 
 

赤→黄色→緑→青→紫というスペクトル色の反対色応答「モドキ」

 ちなみに、つぎに示すのは輝度が一定になるようにした画像の周辺部をグルッと計算してみたものである。このグラフでは縦軸の「輝度チャンネル」の値はずっと同じで、「青<->黄」チャンネル・「赤<->緑」チャンネル平面内で円環状にグルッと一周しているのがわかると思う。自分自身が下の画像を眺めたときに、つながりが自然だなぁ、あるいは自然じゃないなぁ、と感じる感覚と重ね合わせながら見てみると面白いのではないだろうか。
 

輝度が一定になるようにした画像の周辺部をグルッと計算してみたもの

 さて、興味がある方がいらっしゃれば、このバッタもんソフトを使って、ぜひ色々なパラメータを振って色々な画像を読み込んで試行錯誤をしてみてもらいたいと思う。そして、その結果を私に教えていただければとてもうれしい。もちろん、このソフトを使うという話に限らず、面白そうなアイデアがあれば大歓迎である。
 

 さて、虹というとミュージカル「オズの魔法使い」の中でジュディ・ガーランドが歌っていた"OverThe Rainbow"を何故か思い出す。実は、このソフトを作っているときも「ふ〜ん、ふ〜ん、ふ〜んふんふふふ〜ん」と歌詞が判らないまま鼻歌を歌いながら作業していた。歌詞が判らないまま、というのも何なので、せっかくなので調べた歌詞で今回の話を終わらせたいと思う。虹の彼方には…
 

 Somewhere, over the rainbow, skies are blue.And the dreams that you dare to dream really do come true.

2004-03-15[n年前へ]

巨乳ビジョン・シンドローム 

「人の視覚は7メガピクセル」編

 デジタルカメラの高画素化が急速に進んでいる。定価が数十万円ほどにもなるデジタルカメラであると、使われているイメージセンサの画素数は10メガピクセル(=一千万画素)近くになるし、定価が数万円の普及価格帯のデジタルカメラでも数メガピクセル(=数百万画素)であるのが普通である。そして、最近だと携帯電話に付属しているカメラでさえ2メガピクセル以上のイメージセンサを使っているものすらある。35mmの銀塩フィルムが40メガピクセル弱だから、ハイエンド・デジタルカメラの解像度はその数分の一にまで達しようとしている、ということになる。
 

 そんなふうに、デジタルカメラの高画素化は進んでいるわけだけれど、そもそも私たち自身の「目」というのは一体どの程度の画素数があるものだろうか?最近のデジタルカメラと比べると、私たちの目には一体どの位の画素があるのだろう?デジタルカメラと同じ、「メガピクセル」を単位にするならば、人間の「目」というのは何メガピクセルに相当するのだろうか?
 

 実は、人間の場合、デジタルカメラのイメージセンサの画素に相当するのが、目の中の網膜上の錐体(色を感じ、網膜の中心部に多くある)である。その数はおよそ700万個弱ほどもある。つまり、デジタルカメラと同じように言えば、人間の目は7メガピクセル相当ということになる。ということは、最近の数十万円のデジタル一眼レフカメラでさえ、やっと人間の目と同じ程度の画素数に達した程度なのである。普段生活をしている中では、人間の「目」の画素数なんて気にすることはそうそうないだろうけれど、人間の「目」はやっぱりスゴイのである。そして、そんな人間の「目」と同じレベルになりつつあるデジタルカメラもスゴイものなのだ。
 

 ところで、『普段の生活の中では、人間の「目」の画素数なんて気にすることはそうそうない』と書いた。確かに、人間の「目」の画素数や配置、つまり、人間の「目」の画素、網膜上の錐体の数や配置などを気にすることはまずないかもしれない。けれど、それを意識しなくても実は目にしている機会は多いのである。

 それは、例えばこんな縞模様を目にするときだ。片目をつぶって、もう片方の目だけでこの下の縞模様を眺めてみよう。すると、色の付いていないハズの白黒の縞模様の上に、うっすらと色の付いた縞模様が重なって見えてくるハズである。もしも、最初のうち判りにくいようであれば、片目をつぶったまま見る距離を変えてみれば判りやすいかもしれない。縞模様がウネウネと動く様子が見えると思う。

 これは、「Brewsterの色」と呼ばれる色模様で、網膜上にある「赤、青、緑」の各色を感じる錐体の配置と「白黒の縞模様」が干渉してモアレが発生することで知覚される偽色なのである。
 
 

Brewsterの色

 こんな模様というものは実は結構街中に溢れている。例えば、エスカレーターの階段部分やフェンスの金網、あるいは、マンガの効果線など、こういった規則的な模様を普段の生活の中で目にすることは実はとても多い。そんな時、私たちの目はカラフルな「Brewsterの色」を見ていることになる。見てはいるのだけれど、ただそれを意識しないことが多い、というだけである。逆にこんなモアレを意識してしまうようになると、私たちの7メガピクセルのイメージセンサが景色の中の縞模様と干渉して発生してしまうカラフルなモアレは本当に街中に満ちあふれていることに気づくのである。

 例えば、規則正しい模様の服というようなものはとても多い。そして、そんな服の上でさえワタシのまなこ(心の眼かもしれないが)はBrewsterのモアレを見いだしてしまうのである。そして、規則正しい模様の服の上にさえBrewsterのモアレを見いだしてしまうようになってしまうと、これが何とも恐ろしい副作用がもれなくオマケで付いてくるのだ。それは、「巨乳ビジョン・シンドローム」という恐ろしいオマケなのである。
 

 その「巨乳ビジョン・シンドローム」の症状は、下の二枚の写真を見てみると判りやすいのではないか、と思う。まず、左は「規則正しい模様のある生地でできた服」を着ている女性である。そして、右の写真はそんな「規則正しい模様のある服」を眺めたときに、意図せずしてモアレが発生してしまった様子を示している。ほとんど同じ二枚の写真ではあるが、よ~く眺めてみれば服の部分にモアレが発生してしまっている様子がわかるハズだ。しかも、ある特定の一部分であることも判るだろう。
 

モアレが作り出すバストの等高線
「規則正しく糸が織りなした下着」
を着ている女性
左の女性を眺めたときに
モアレが発生すると…

 …そう、規則正しい模様の服を着ている人を眺めた場合には、凹凸の激しい部分で特に顕著にモアレが発生してしまうのだ。そして、そのモアレはその凹凸具合の等高線(と同じようなもの)を示してしまうのである。もっとハッキリ言ってしまうならば、規則正しい模様の服を着ている女性なんかを眺めた場合、胸の部分の凹凸具合の等高線が意図せずして見えてしまうのである*。日夜地図を作り続けている国土地理院もビックリのバスト地図(凸凹等高線入り)が幸か不幸か見えてしまうのだ。しかも、これは凹凸の激しい部分でのみ顕著に認識されたりするがために、巨乳の等高線は容易に見ることができるけれど、微乳の等高線はなかなか見ることができない、というまさに「巨乳ビジョン・シンドローム」なのである。
 

 残念ながら、私はオッパイ星人ではないので詳しいことは判らないけれど、真性のオッパイ星人達は生まれながらにしてこんな巨乳ビジョンのまなこ(眼)を身につけているに違いない。だからこそ、微乳の小胸さんではなくて、巨乳さんに引き寄せられていくのかもしれない。つまりは、オッパイ星人をオッパイ星人たらしめていたのは、こんな巨乳ビジョン・シンドロームだったのかもしれないのである。

 そして、おそらく彼らの視力は私たちヒトに比べて遙かに高いハズだ。だから、単に規則正しい絵柄の服だけではなくて、例えば規則正しく糸で織りなされた服、すなわち、それが布製であればどんな服の上からでもこんな等高線モアレを見いだしてしまうに違いないのである。そして、その服を着ているものの胸の凹凸の等高線(もちろんその部分だけではないが)を眺めることができるに違いないのだ。
 

 というわけで、最後に「オッパイ星人の視覚をシミュレートした画像」をでっち上げてみたのが下の動画である。これは、女性が着ている「服の持つ規則性=周期」を自動的に認識し、網膜の周期をその「服の持つ周期]近辺になるように変化させて、意図的にモアレを発生させてみたものだ。どんな模様であってもそれが「規則正しい模様を」である限りは、胸の凹凸の等高線がはっきりと見えてしまうことが実感できることだろう。
 

オッパイ星人の視覚をシミュレートした画像
 胸の凹凸等高線がハッキリと…

 というわけで、規則正しい模様の服を着ている女性は周りの視線(オッパイ星人や幸か不幸か「巨乳ビジョン・シンドローム」にかかってしまった人間)に要注意、というのが今日の結論なのだ。そして、邪悪な心を持つ技術者が、「巨乳ビジョン・シンドローム」と同じようなアルゴリズムで動く「巨乳ビジョン・カメラ」を開発しないことを、今はただただ祈るばかりなのである。

2011-12-13[n年前へ]

続「ゴッホの本当のすごさを知った日」の「最も間違っている部分」 

 一月と少し前、『「ゴッホの本当のすごさを知った日」の「最も間違っている部分」』という雑文を書きました。 それは、「asada's memorandum (ゴッホの本当のすごさを知った日)」という記事に対し、「間違っている点」と「興味深い歴史的な情報」を書いてみたものです。

 「ゴッホの本当のすごさを知った日」に書かれている内容は、要約すると、およそ次のようになります。

  • ①ゴッホは色覚が異常だったのではないかと言われているそうだ。
  • ②P型色覚と「普通の」色覚の中間的なものを”疑似体験”させるような色変換をゴッホのRGB画像に掛けてみた。
  • ③色変換された画像は”自然で素晴らしく見えた”から、ゴッホはP型かD型の色覚特性を持っていたのだろう。
こういった論旨の、②(③も関連します)に関して、前回記事でこんなことを書きました。
 色覚”疑似体験”ツールというのは、原理上、ある色が「どの色」に変換されるかということには、あまり意味がありません。あくまで、どういった色群が「見分けにくい色」となってしまうかを疑似体験するものに過ぎません。それらの「見分けにくい色」を、実際のところ「どういう色」として感じているかまでを追体験できるものではないのです。ましてや、その色覚”疑似体験”ツールにより変換出力された色調をもって、絵画の色表現や階調表現を論じる・感じることができるようなものではありません。ここにある「使い方への間違い」は、「さまざまな”光”を、各個人が自分の中でどういう”色(存在)”として位置づけるか」ということを整理しないままに作業を行ってしまったのではないか、と思います。
この『さまざまな”光”を、各個人が自分の中でどういう”色(存在)”として位置づけるか、ということを考える』という点について、今回はもう少し詳しく書いてみることにします。

 下の図は、人が景色を眺め・その景色を描こうとする際に、人がどのように色を感じ・色を描くかを(簡易的に)示したものです。「目の前の景色から発せられた(さまざまな波長毎に異なる強さを持つ)光」は、眼の中にたくさん存在する(色を感じる)3種の錐体に刺激を与え、そして3種の(しかしたくさん存在する)錐体からの刺激は複合的に組み合わさった上で「明暗チャンネル」「緑ー赤チャンネル」「黄ー青チャンネル」の3つとなって、脳の中へと送り込まれた上で、大脳中枢でその情報が処理されていきます。その(眼から脳までの)人体内の色処理の繋がりを限りなく大雑把に示したものが、下図の右に描いた「処理システム」です。

 ここで注目すべきことは、眼の中にあるたくさんの錐体に辿り着いた「光」は、それが「さまざまな波長毎に異なる強さを持っている=多くの情報を持っている」にも関わらず、わずか3つの色情報へと変換されてしまう、ということです。それはつまり、本来は違うスペクトル(各波長に対する光強度)を持つ「光」を、人は同じ「色」として認識してしまう、ということです。 だから、たとえば、左下に貼り付けたようスペクトルを持つ光と、右下に貼り付けたような光を(多くの)人が眺めたならば、それら2つの光が「違う光波長分布」の「大きく異なる光」であるにも関わらず、それらを同じような・区別することができない「色」として感じてしまいます。

 

 あるいは、こうした「処理システム」、つまり私たちの頭の中での色は「明暗チャンネル」「(”緑っぽいか赤っぽいか”を示す)緑ー赤チャンネル」「(”黄っぽいか青っぽいか”を示す)黄ー青チャンネル」というった3チャンネルのみで処理されるがゆえに、私たちが「赤色と緑色」あるいは「黄色と青色」といった「補色」を同時に感じることができないという現象が生じることも自然と理解できる、というわけです。

 この(眼の中にある)錐体の光波長感度分布などは、人それぞれの個性・違いがあります。だから、「どのような光を同じ色と感じてしまうか」は異なります。あるいは、さまざまな異なる光を「どのような(どのように)違う色」として見分けるか、ということも異なります。

 そういった違いから生じる「(他の人の)違う色として区別しにくさ」を(ほんの少しだけ)理解することを目的として作られている道具の一つが、色覚”疑似体験”ツールです。それらのツールが行う処理がどのようなものかというと、(疑似体験したい錐体光波長感度分布下で)任意の光がどのような「明暗チャンネル」「緑ー赤チャンネル」「黄ー青チャンネル」を生じさせるかを計算し、その計算結果と同じ3刺激を与えるような光を表示させることで、(疑似体験したい錐体光波長分布などを持つ他の人にとっての)「違う色として区別しにくさ」を理解しようとするものです。

 …ただし、それらのツールにより変換出力された結果(色調など)は、「絵画の色表現や階調表現を論じる・感じる」ことができるようなものではありません。(ちなみに、RGB値から計算を行うような簡易ツールの場合、そのツールが行う処理は一種の単なる色域圧縮のようなものになります)

 たとえば、人が景色を眺め・その景色を絵の具を使って描こうとする時、その景色を見て感じる色も・その景色を描くために選ぶ絵の具も、選ばれた絵の具で描かれた絵も、すべて「それぞれ個人ごとに大なり小なりに異なる(人それぞれの)色処理」がかかります。だから、もしも色を忠実に再現しようとする画家=見た景色と同じ”色”に感じる絵の具をただ選び出すような画家が”もしも・仮に・百歩譲って”いたとしたならば、描かれた絵が派手であれば・その画家は景色をも派手に感じていたことになる…というわけです。

 そして、この「派手」とか(あるいはその逆の)「自然で滑らか」とかそういった感覚を育み・作り出すもの=毎日眺める景色・生活のすべてにも、そんな「処理」が掛けられているわけです。つまり…色変換処理を掛けた画像から、”自然”とか”良い”といったことを考えることができるほどには、単純な話ではないのです。画家本人の「色としての感じ方」を考えるのであれば、景色や絵具やキャンバス上の絵といったすべてに処理を掛け・考えなければいけないし、絵を見る側の「色としての感じ方」を想像しようとするならば、絵だけでなく・普段眺めるものすべてに変換処理を掛けた上で、想像しなければならないわけです。

 そういったことを考えながら、「ゴッホの本当のすごさを知った日」という記事を読んでいくと、あの記事が「さまざまな”光”を、各個人が自分の中でどういう”色(存在)”として位置づけるか」ということを考えないまま、思いを巡らせないまま、そして、整理しないままに書かれたのだろう、と感じてしまうのです。

続「ゴッホの本当のすごさを知った日」の「最も間違っている部分」続「ゴッホの本当のすごさを知った日」の「最も間違っている部分」続「ゴッホの本当のすごさを知った日」の「最も間違っている部分」








■Powered by yagm.net