hirax.net::Keywords::「宇宙」のブログ



2000-11-26[n年前へ]

ブランコの中の∞(無限大) 

なんで一体漕げるのだろう?

 公園のブランコというのは、何故かとても不思議な雰囲気を持っている。ホントにうるさいくてたまらないくらいのガキんちょ達が、アクロバットのようなスゴイ技を見せていたりする。それは、まるで上海雑伎団を見ているような気分になる。小さな子がなかなかブランコが漕げず、ブランコの上で宇宙遊泳のように四苦八苦しているのを見ているのも思わず笑ってしまうくらいに可愛らしいものだ。

 もちろん、そこは子供の領分というだけではなくて、黒沢明の「生きる」の主人公がしていたように「大人がブランコに座って揺れていたり」すると、思わずその人の陰に隠れている物語を想像したりしてしまう。ブランコの周りというのはそんな不思議な雰囲気を持っているのだ。

 やたらにブランコを漕ぐのが上手いガキんちょもいる一方で、全然ブランコを漕げず四苦八苦する子供もいる。ブランコを漕ぐコツを覚えるのもなかなか大変そうである。考えてみれば、ブランコは一体どういう風に漕ぐものなのだろう?口で上手く説明できる人がいるだろうか?

 それに、そもそも私たちはブランコを何故漕ぐことができているのだろう?

 いったい、いつから疑問に思うことをやめてしまったのでしょうか? いつから、与えられたものに納得し、状況に納得し、色々なこと全てに納得してしまうようになってしまったのでしょうか?
 いつだって、どこでだって、謎はすぐ近くにあったのです。
 何もスフィンクスの深遠な謎などではなくても、例えばどうしてリンゴは落ちるのか、どうしてカラスは鳴くのか、そんなささやかで、だけど本当は大切な謎はいくらでも日常にあふれていて、そして誰かが答えてくれるのを待っていたのです....。
という手紙で始まるのは加納朋子の「ななつのこ」だが、「何故、リンゴは落ちるのかという謎」と同じく、「ブランコの漕ぎ方の謎」だってとても不思議だ。いつも目にする公園のブランコを、私たちは一体どうやって漕ぐことができているのだろう?
 

 もちろん、「何でブランコの漕ぎ方が不思議なのさ?」と言う人も多いだろう。その中には理路整然とブランコの漕ぎ方を説明してくれる人もいるだろう。そして、「特にブランコの漕ぎ方をじっくり考えたことなんかないもんね」という人も多いに違いない(私だけかもしれないが)。そこで、まずは「ブランコの不思議」を簡単に書いてみることにしよう。

 次の図は「ブランコを漕いでる子供」である。
 

ブランコを漕いでる子供

 この子供が何もせず立っているだけ(あるいは座っているだけ)だったら、どうなるだろうか?それはもちろん、単なる振り子と同じくようにブランコは動く。もしも色々な摩擦がなければ、まったく同じように動き続けるだけだし、摩擦力があればブランコの動きはただ減衰していくだけである。つまり、子供が何もしなければ、ブランコの動きは「遅く・小さく」なることはあっても、ブランコが「速く・大きく」なることはないのである。

 だからブランコを速くするためには、「ブランコに乗ってる子供がブランコを漕がなければならない」わけであるが、ブランコに乗ってる子供は一体どんなことができるだろうか?

 次に示す図は「ブランコに乗ってる子供を中心にとった座標軸」を描いてみたものだ。この図の中で直交する二つの軸を描いてある。つまり、

  1. ブランコの動きの中心を向いている軸A
  2. 軸Aに直交する、つまりブランコの進行方向(あるいはその逆方向)を向いている軸B
である。
 
ブランコに乗ってる子供を中心にとった座標軸

 ところが、実は「ブランコに乗ってる子供」はこの二つの軸の内の片方、軸Aに対しての動きしかできない。何故なら、軸B方向に対しては「ブランコに乗ってる子供」動きの支えになるモノが全然無い。だから、ツルツル滑る氷の上では全然動けないのと同じく、「ブランコに乗ってる子供」はその方向には動けないのである。もし子供がその方向に動こうとして体を動かしたりしても、結局子供の重心はその方向には全然動かないのだ。

 それに対して、ブランコの動きの中心を向いている軸A方向に対してはブランコの鎖も座っている(あるいは立っている)板が支えになるわけで、その方向に対しては「ブランコに乗ってる子供」は動くことができる。

 というわけで、ブランコの上では「ブランコの動きの中心を向いている軸A」方向にしか動けないわけであるが、その方向というのはブランコの進行方向に対しては直交している。つまり、ブランコを漕ぐためには、「ブランコの進行方向に対して直交している方向に動く」しかないことになる。

 ここまで書くと、ブランコの不思議が判るハズだ。ブランコを漕ぐ、つまりブランコを軸B方向の速度を上げたいのに、我々は「軸Bに対して直交している方向に動く」ことしかできないのである。一体何故、軸A方向に動いたハズなのに、それに直交する軸B方向の速度が増すのだろうか? この謎「ブランコの不思議」を、ゆっくり考えてみることにしよう。
 

 まずは、ブランコに乗ってる子供が立ち上がったりして、「ブランコの動きの中心を向いている軸A」方向に動いた場合、何が起きるだろうか?
 

ブランコに乗ってる子供が立ち上がったりすると、何が起きる?

 「ブランコの動きの中心を向いている軸A」方向に動くと、ブランコの鎖の長さが短くなることと同じである。すると、回転しているブランコの鎖が短くなるわけで、そうするとブランコの速度は速くなる。何故なら、角運動量が保存されるからである。ちょうど、スケートのフィギア競技の選手が回転中に伸ばしていた手を縮めると回転数が早くなるのと同じだ。

 もし、ブランコに乗ってる子供の重心がブランコの鎖の長さの半分だけ(とんでもない身長の子供だ!)上がれば、ブランコの速度はもとの速度の倍になるのである!

 ということは、少なくともこの瞬間は「軸A方向に動いたハズなのに、それに直交する軸B方向の速度が増す」わけであるが、これでブランコの漕ぎ方を納得するにはまだまだ早いのである。確かに、「ブランコの動きの中心を向いている軸A方向に動く」とブランコの速度は増すわけであるが、それはその瞬間だけである。ブランコの上で「立ち上がり続ける」なんてことはできないわけで、速度が増し続けるわけではないのである。

 もしも、「もう一度ブランコの上で立ち上がるために、すぐに低い姿勢に一旦戻ったり」したら大変だ。ブランコの鎖の長さが長くなるのだから、今度はブランコの速度は遅くなってしまうのである。

 もし、ブランコに乗ってる子供の重心がブランコの鎖の長さの二倍だけ(つまりさっき立ち上がった逆の動きである)下がれば、ブランコの速度はもとの速度の1/2になってしまうのだ!
これでは、結局さっきの速度が二倍になったことは帳消しになってしまう。つまり、「単純に」角運動量の保存を考えるだけではブランコの速度を(長い間にわたって)早くしていくことはできないわけだ。

 このままでは、「ブランコを漕ぐことなんか不可能である」という結論が出てしまいそうになるが、ブランコを漕いでる子供達はイッパイいるわけで、そんな結論を受け入れるわけにはいかない。彼らがみんな超能力でブランコを漕いでいるわけもないのである。まだまだ見落としていることがあるので、ブランコの不思議の謎が解けないだけのハズなのだ。
 

 そこで、ちょっと考えてみると「とんでもなく単純なこと」を見落としていたことに気付いた。それは、「タイミング」である。例えば、ブランコの速度がずっと同じであるすると、

  1. 初期のブランコの速度 = 10
  2. 重心位置を高くして 10 X 2 = 20 (やったぁ、速度が二倍だぁ!)
  3. 重心位置を低くして 10 X 1/2 = 10 (何てこったい、速度が半分になっちまったか!)
これじゃぁ、全然変わらないぞ!となるわけだが、もしもしブランコの速度が刻々違ったらどうなるだろうか?実際、ブランコの速度は刻々変わるわけだが、そんな場合はこんな感じにならないだろうか?
  1. 初期のブランコの速度 = 10
  2. 重心位置を高くして 0 X 2 = 20 (やったぁ、速度が二倍だぁ!)
  3. そのあとブランコの速度 = 0
  4. 重心位置を低くして 0 X 1/2 = 0 (0が0になっても全然変わってないもんね!ヘヘン!)
どうだろうか?「やったぁ、速度が二倍だぁ!」という喜びの瞬間はあっても、「何てこったい、速度が半分になっちまったか!」という悲しみの瞬間はないのである。「0が0になっても全然変わってないもんね!ヘヘン!」という「なくす物は何もない状態」はあるが、何も無くしていないのだから、それはノープロブレムなわけである。もちろん、ブランコの速度が0になった瞬間には「運動エネルギーを全て位置エネルギーに変換」しているわけで、速度は隠し財産としてちゃんと保存しているのである。そう、要はタイミングなのだ。

 人生何事もタイミングが重要である。失恋した男性や女性にタイミングをわきまえた「恋のハイエナ」達が寄ってくるのと同じく、またお金に困っていると何故かサラ金の広告が目の前にチラチラするのと同じく、ブランコを漕ぐにはやはりタイミングが重要なのだ
 

 なるほど、考えがまとまってきた。このイキオイでそのまま「ブランコの理想の漕ぎ方」まで考えてしまおう。

 まず、「重心位置を高くしてブランコの速度早くする」にはできるだけ速度が速い瞬間に行うのが良いだろう。倍率が確定している賭なのだから、元金はあればあるほどおトクである。1万円×2=二万円では1万円しかもうからないが、一千万円×2=二千万円では一千万ももうかるのだ。ブランコの速度が速い瞬間に立ち上がれば、一番おトクに速度を増すことができるのである。

 もちろん、ブランコの速度が速い瞬間といえば、明らかにブランコが一番下にきた瞬間である。つまり、ブランコが一番下にきた瞬間に立ち上がれば「一番おトクに速度を増すことができる」わけだ。しかも、その瞬間は鉛直に重心を持ち上げることになる。つまり、位置エネルギーを効果的に増加させることができるわけだ。結局、この時に増加させた位置エネルギーは後で、運動エネルギーに変換されるわけで、結局これがブランコの運動の源となるのである。

 そして、「次にもう一度立ち上がるために一旦低い姿勢に戻る瞬間」=「速度が遅くなる瞬間」はブランコが停止しているときであれば何の問題もない。ブランコはもともと止まっているんだから、その速度が何分の一になったって全然気にしないもんね!となるわけだ。そのタイミング= ブランコが止まる瞬間といえば、もちろんブランコが最高地点まで上がった瞬間である。つまり、ブランコが一番上にいった瞬間に低い姿勢に戻れば全く減速無しに次の加速に備えることができるわけである。しかも、その時には実は運動エネルギーを位置エネルギーに変えることで、隠し財産にしているわけで、もう汚い政治家のマネーロンダリングのような見事な方法なわけだ。

 というわけで、

  • ブランコが下に来たときに(立ってる場合は)足を伸ばして立ち上がったり、(座ってる場合は)足を曲げたりすることにより高い位置に重心を持ってきて(しかも、重力に逆らって重心を上げるため位置エネルギーが増加する)
  • ブランコが上に行ったときにその姿勢を元に戻す
ことにより、ブランコは効果的に漕げる、ということが判るわけだ。これが、理想の漕ぎ方だろうし、これの逆の漕ぎ方をすればきっとそれは最悪の漕ぎ方のハズなのである。

 それでは、確認のためにそのやり方で本当にブランコが漕げるのかどうか、シミュレーション計算を行ってみた。ブランコの動きは振り子運動だが、振れ幅がとても大きいので、cosx≒xというような近似をする単振動としての扱いはできない。そこで、楕円積分の計算を行わなければならない。が、私が自分の力でできるかどうかはともかく、そこはMathematicaに解かせればイッパツである。もう、驚くくらい簡単なのである。自分の力で解いていないところが、実に悲しい現実ではあるが、それが現実なのだからしょうがない。

 というわけで、ブランコの動きのシミュレーションをしてみた結果が次のグラフである。「ブランコに乗ってる子供」の漕ぎ方としては、以下の三つ

  1. 何もしない場合
  2. ブランコが下にきたあたりで立ち上がり、ブランコが上にきたあたりで座り込んだ場合
  3. ブランコが下にきたあたりで座り込み、ブランコが上にきたあたりで立ち上がった場合
を考えてみた。もちろん、瞬間的に子供が立ち上がったり、座り込んだりすることはできないだろうから、その子供の動きは三角関数で近似してみた(いや、これのせいで計算はかなり大変だったが、これのおかげで実際の動きにかなり似たものになったと思う。)。さて、この三つの場合のブランコの動きのシミュレーション結果はどうなっただろうか?
 
ブランコの動きのシミュレーション結果
1. 何もしない場合

→ ブランコの動きはず〜と変わらない
2. ブランコが下にきたあたりで立ち上がり、
ブランコが上にきたあたりで座り込んだ場合

→ ブランコの動きはどんどん大きくなる
「やったぜ、これが理想の漕ぎ方だぁ。」
3. ブランコが下にきたあたりで座り込み、
ブランコが上にきたあたりで立ち上がった場合

→ ブランコの動きはどんどん小さくなる
「なんてこったい、遅くなっちまったぁ。」

 この結果から、ちゃんと1.の「何もしない場合」は「ブランコの動きはず〜と変わらない」し、理想の漕ぎ方であるハズの2.の「ブランコが下にきたあたりで立ち上がり、ブランコが上にきたあたりで座り込んだ場合」は「ブランコの動きはどんどん大きくなる」し、最悪の漕ぎ方であるハズの3.の「ブランコが下にきたあたりで座り込み、ブランコが上にきたあたりで立ち上がった場合」には「ブランコの動きは逆にどんどん小さくなってしまう」ことがわかる。というわけで、今回考えた「ブランコの不思議= 漕ぎ方」はシミュレーション計算結果からも確かめることができたわけだ。

 ところで、こういったタイミングを考えながらパラメーターを変えることで動きを大きくしたりすることは「パラメータ励振」と呼ばれる。ブランコの漕ぎ方はその「パラメータ励振」の応用のひとつである。「何故、リンゴは落ちるのかという謎」には重力という基本的な物理現象が隠されていたが、それと同じく、「ブランコの漕ぎ方の謎」にも「パラメータ励振」という物理現象が隠されているのだ。次回以降も、この「パラメータ励振」を手がかりにいくつかの「身近な謎」に迫ってみたい、と思うのである。
 

 さて、公園でブランコを漕ぎまくる子供をもし見かけたならば、ぜひ横から子供の動きを見てやってもらいたい。きっと、その揺れ動くブランコの中にはこんな∞(無限大)の形が見えるハズだ。天まで上ろうとする「ブランコの秘密」はその「ブランコの中の∞(無限大)」に隠されていたのである。子供も含めて人間の可能性は∞(無限大)だと私は思うが、ブランコの揺れる動きから、そんなことを考えてみるのも少し面白いのではないだろうか? それとも、ちょっと考え過ぎかな。
 

2001-01-13[n年前へ]

オッパイ星人の力学 第四回 

バスト曲線方程式 編

 先日、父から封書が届いた。二十一世紀にもなったというのに、e-mailでもなくて封書が届いたのである。これは、やはりアレだろうか。いい年にもなってるのに、クダラナイWEBサイトを立てているデキの悪い息子を厳しく叱るためだろうか?しかも、そのクダラナイWEBサイト(しかも、有害公式認定サイト)の名前が自分の名前(hirax)だったりするからだろうか?それとも、「本が出たなら送れ」とは言われても実は送りたくなかった「あの本」を、少し前に父に送ってしまったからだろうか?いや、それとも…

 そんなこんなでドキドキしながら封筒を開けると、記事のコピーが二つ入っていた。他には何も入っていないのである。一体これは何の記事だろう?と思いながらそのコピーを眺めてみた。すると、まずひとつは去年の12月25日付けの毎日新聞の科学欄である。二十一世紀を専門家達が予想した記事の横に「究める」というコーナーがあって、そこに「女性の胸と男性の好みの進化的関係は?」というインタビュー記事があった。そして、その記事が蛍光ペンでマーキングしてあったのである。

 これは一体、どういうことなのだ?と頭の中がグルグル&複雑な気持ちになりながら、とりあえずその記事を読んでみた。すると、この記事がとても面白い。インタビュー中の

 ヒトは異性をどう選ぶのか?そんな疑問から女性のバストと弾性の好みに進化的関係があるかを研究している。
(中略)
 小さいバストほど魅力的だと母に教えられて育った。しかし、大きいバストが好きな男性がいることに気付いて驚き「なぜ」と考えたのが研究のきっかけだった。
(中略)
 「大きいバストが本当に普遍的に好まれるかを知りたい。控えめなバストが淘汰されてしまうとは考えたくないから」と話す。
という東大大学院の東海林さんの語りもとても面白いし、バストサイズを5段階に変えた女性の合成写真を使い、男子学生300人にアンケートしたという実験とか、巨乳好きの性格が父から受け継いだものであるかを調べるために、父子間で性的好みが伝達されるかを調べる、などの話もとても面白い。最高である。

 そして、父からの封筒に入っていたもう一つの記事は宇宙科学研究所の新聞の中の宇宙基地利用研究センターの黒谷氏の「Anti-Gravity」というエッセイだった。なんでも、Anti-Gravityという化粧品があって、
それは顔の皮膚のコラーゲンに皮膚がたるまないようにするというものらしい。顔の皮膚にハリをあたえて、顔のたるみを防ぐのである。顔の皮膚のたるみ元をたどれば重力のせいだから、「anti-gravity= 無重力」化粧品ということになるわけだ。じゃぁ、このAnti-Gravityを体中に塗れば、バストやヒップが垂れるという女性の悩みもなくなるのではないか、と「無重力における生物の専門家」である黒谷氏は書いていて、参考文献に本サイトが挙げられていたのである。

 うむむ、世の中には巨乳の科学について進化論的に研究している人がいたり、オッパイの力学について考え(てみたりもす)る無重力生活の専門家もいるのだ。これはマズイ。油断している場合ではない。私もオッパイ星人研究をもっと真剣にしなければならない。父はきっと私に「研究の厳しさ」を教えようとしたに違いないのである。私の父はこれまでの「オッパイ星人の力学」を読んで、美味しんぼの海原雄山風に「うわあっはっ、こんなものでオッパイ星人の力学だとは笑止千万!」位のことを言ったに違いないのである。

 しかし、それだけではない。「二十一世紀、小さいバスト、大きいバスト、無重力、皮膚、オッパイのたれ」というヒントを与えてくれたのである。ここまでされて何かを書かなくて何としよう。オッパイ星人研究の手は一瞬たりとも休めてはならぬのである。そこで今回は「皮膚のハリ」や「重力」を気にしながら、「オッパイのたるみ・形状」について考えてみることにした。
 

 さて、一体バストの形状というものはどうなっているのだろう?これまでの「オッパイ星人の力学」では

  • 半球モデル
  • 円錐モデル
などのモデルを導入してきた。しかし、これらのモデルは自分で言うのも何だがかなりの無理があったと思う。実際、これらのモデルを元に計算を積めていくとどうにも矛盾が出てくる。そのため、その計算上の矛盾を隠すために「松坂季美子項」等を無理を承知で導入したりしていたのだ。
 そしてもちろん、このモデルに対して不満を持つのは私だけではなくて「これらのモデルには私は納得できません。」というメールがたくさん送られてきた。それどころか、「本当のオッパイをあなたは知らないのではないですか?」という実に失礼?なメールさえ送られて来ていたのである。「それでは、参考までに本当のオッパイの資料でも送って頂けないでしょうか?」とは私は大人なので返事をしなかったが、ちゃんとしたモデルを作らないことにはこれからもそんなメールがまだまだ来るに違いないのだ。

 というわけで、今回は新しいバストの形状モデルを提唱してみたい。それは「バストの内部は液体に満ちていて、その液体を外側の皮膚が支える」という

  • 水風船バストモデル
である。何故こんなモデルを作ったかというと、噂の真相の2000年2月号の中に「生理食塩水を2000cc注入するという豊胸手術」という文章を見かけたからだ(その後reimyさんより、最近はムコ多糖という物質を使ったバイオジェル(ハイドロジェル)を使用するのが主流だ、と教えていただいた。噂の真相の古い感覚こういうところにも現れているかもしれない。)。この記事が本当であれば、生理食塩水という液体がバスト中に注入されていてそれを皮膚が支えるという水風船バストモデルもそれほど不自然ではないと思われるのだ。
 

 こんなモデルに基づいて、バストの形状を計算するにはどのように考えれば良いだろうか?次の図が「水風船バストモデル」における内部の水と各皮膚部分にかかる力を示してみたものである。これはバストの断面をを鉛直方向に示しており、左の黒い鉛直線が胸板であり、赤い線がバストの形状を示すバスト曲線である。(ちなみに、今回はバストを二次元の断面でのみ考えている。)
 

「水風船バストモデル」における内部の水と各皮膚部分にかかる力
左の黒い鉛直線が胸板
赤い線がバストの形状を示すバスト曲線

 「水風船バストモデル」における内部の水には重力がかかり、バストの下の方にいくほど圧力がかかっている。そして、皮膚に面している内部の水はその圧力を皮膚に伝える。そして、皮膚はその圧力で変形しながら水で満ちたバストを支えるのである。この時、バストの形状= 皮膚の形状を示すバスト曲線はどんな条件を満たしているだろうか?

 ここで、胸板にそって下向きにY軸をとり、バスト曲線をB(Y)で表すことにしよう。上の図をよく眺めるとわかると思うのだが、バストの形状= 皮膚の形状を示すバスト曲線をB(y)とすると、バスト曲線B(y)は実はこんな方程式を満たす。
 

「水風船バストモデル」におけるバスト曲線B(y)が満たす方程式

 まぁ、ここでは簡単のために、係数を省略していたり、バストが本当に垂れてしまうような状況は考えていなかったりするので、ごく簡易的なバスト曲線方程式だと思って欲しい。大雑把に係数などを無視して、言葉で言ってしまえば、バスト曲線の傾きの変化はその点より上に位置するバストの重量に等しい、という感じである。自由境界におけるLaplaceの関係でも連想して頂ければわかりやすいだろうか?とにかく、この条件と適当な境界条件さえ入れてやれば、「水風船バストモデル」におけるバスト曲線B(y)は計算することができるのである。
 

 さて、このバスト曲線方程式を一般化したり、係数をちゃんと計算したり、三次元に拡張したりということはまたいつか行うことにして、まずは適当にこのバスト曲線方程式を数値的に解いてみた。それが、例えば、次の図である。これが、「水風船バストモデル」のバストの形状の一例だ。
 

バスト曲線方程式を数値的に解いてみた結果
すなわち、「水風船バストモデル」のバストの形状
「小さいバスト」の場合

赤:すごくハリのあるヤングな皮膚の場合
マゼンダ:普通のハリを持つ皮膚の場合
藍色:ちょっとハリの少ない皮膚の場合

 この図の中でバスト形状のプロットが三種類あるのは「皮膚のハリ = 皮膚のヤング率」として三種類の値を使ってみたからだ。以前

の中で
 そう、もうお判りのはずだ。 「バストに関するヤング率」はまさにヤング率(Young率)なのである。実は年齢に比例する係数だったのだ
と書いたが、あれと同じである。今回は、年齢で変わっていくバストの皮膚のハリを「バストの皮膚のヤング率」とおいてみたのである。そういうわけで、皮膚のハリ= 皮膚のヤング率によってバストの形状は異なるわけだが、まずは眺めてみてもらいたい。以前のどうみても不自然な「半球バストモデル」等に較べて、ずっとましになっているとは思わないだろうか?特に、藍色・マゼンダのプロットなどかなり自然な形状になっていると思うのである。感受性の豊かなオッパイ星人であれば、必ずしやググッとくるハズである。

 さすがに、メチャクチャ皮膚のハリがある赤色のプロットなどは松坂大輔もビックリの「超ロケット乳」になってしまっているが(といっても、この図のアスペクト比に意味はないんだけど)、今や時代は二十一世紀、宇宙へロケットで飛び出す時代だと思えば、こんな「超ロケット乳」を眺めるのもそれまた一興ではないだろうか。ぜひこの「超ロケット乳」には宇宙へ飛び出してもらいたいものである。
 

 もちろん、世の中には「大きいことは良いことだ」という巨乳大好きオッパイ星人達もいるわけで、そんな人達のためにもう少し「大きいバスト」の場合で計算してみたものと並べて比較してみたのが次の図である。
 

「小さいバスト」と「大きいバスト」の計算結果

赤:すごくハリのあるヤングな皮膚の場合
マゼンダ:普通のハリを持つ皮膚の場合

藍色:ちょっとハリの少ない皮膚の場合
「小さいバスト」の場合

「大きいバスト」の場合

 個人の好みもあると思うが、けっこう自然な「巨乳形状」が再現できている。ちなみに、今回使用した簡易的なバスト曲線方程式ではすごく巨乳だったり、皮膚のハリが無さ過ぎてあまりにバストが垂れている場合の計算はできない。簡単に言えば、Yに対してバスト曲線B(Y)が一対一対応しないためである。が、それゆえに巨乳と言っても美乳の範囲のみ考えることができるのである。

 また、この「小さいバスト」の場合と「大きいバスト」の場合の比較から、「巨乳は垂れるのよっ!だから、小さい方が良いのっ!」という世の小振りなバストの女性がよく言うセリフの妥当性も確認してみたいところではなるが、そういうことは何か危険なことであるような気もしてきたので、今回は止めておきたい。

 ところで、今回の話はAnti-Gravityから話が始まっているわけだが、ちなみに「水風船バストモデル」は無重力下ではどのような形状をとるかと言えば、当然体積に対して表面積が最小となる「半球形状」になる。つまり、「半球バストモデル」は「水風船バストモデル」の重力を無視した特殊な場合であり、逆に言えば「水風船バストモデル」は「半球バストモデル」にバスト内部での重力の影響を加えて一般化したものだったのである。

 今回は、とりあえず新たに「水風船バストモデル」を提唱し、そのモデルにおけるバスト曲線B(y)を解くための簡易的な方程式を考察し、それを数値的に試しに解いてみた。次回は今回行った考察を用いながら、少し違うアプローチで「オッパイ星人の力学」を考えてみたいと思う。
 

 さて、今回の話のきっかけともなった黒谷氏らの書いた本「星と生き物たちの宇宙」は原稿のごく初期の段階で実は読ませてもらっていた。その時感想を聞かれたときは、この本はメールのやりとりで構成されているので、「なるべく著者達の私的な部分を消さないままにしておいた方が面白いんじゃないか」なんて適当なことを言っていたのだった。その著者達が書いたこの本のあとがきの言葉を最後に引用して、これからの「オッパイ星人の科学」への「戒め」と「言い訳」としておきたい、と思うのだった…
 

 科学は応用を通じて実生活に関わり、知的追求というこころの喜びにも関わる二面を持っています...多くの人に、こころを喜ばせる科学を楽しんでもらいたいですね。    H.Hirax, A.Kurotani

 

2001-02-27[n年前へ]

『毒電波は本当に存在するのか。』 

 依頼内容 >>> よく駅なんかで、「世界が危機に陥るのは、携帯電話からでてくる毒電波の仕業だ。たばこは麻薬だー」と、叫んでいる人がいますが、本当なんでしょうか。あと、うちの近所で、「私の生理不順は松下電器が出している有毒宇宙電波のせいだぁー」と通行人に主張していらっしゃるかたが、住んでおられますが、本当なんですか。調査お願いします。
進行状況 未調査
依頼主 W K一郎
これってもしかしてもしかして > わきめも(リンク

2001-07-06[n年前へ]

宇宙の仲間を求めて 

 アルタイルに向けて電波でメッセージを送った話。光村の小学校国語5年生、といっても今年の版では少なくとももう入っていないみたいだ。「もちろん、宇宙人に電波を送ったなんて考えているわけでなくて、私たち自身の心に送ったと思っている」と送信者・実行者のひとりは言ってた。
 ところで、アルタイルは中国・日本では牽牛星と呼ばれる。七夕の夜に逢う二人の内の男の方だ。明日は七夕。星に願いは届いたのでしょうか?(リンク

2001-07-07[n年前へ]

七夕の夜に願うこと 

ベガとアルタイルと一通のメール


 今日は七月七日、七夕だ。その夜、天の川の両岸で光る織女星と彦星が一年に一度だけ逢う。織女星は琴座(Lyra)のα星ベガ(Vega)で、彦星は鷲座(Aquila)のα星アルタイル(Altair)である。
 

天の川の両側で光るベガとアルタイル
(ステラナビゲータの画像から)

 ベガは地球から25光年離れた場所にあり、その明るさは0等のとても明るい星だ。もう一方のアルタイルは地球から17光年離れている。そして、ベガとアルタイルの間の距離は15光年離れている。それを15光年「も」離れていると思うか、15光年「しか」離れていないと思うか、それは人によって違うだろう。15光年「も」離れていると思う人は、ベガとアルタイルの間で言葉を交わしても、その言葉が往復するのに15×2= 30年もかかる、と考える。そして、15光年「しか」離れていないと思う人は、たった30年で言葉が通い合う、と考えることだろう。人それぞれだ。

 誰かと待ち合わせている時、遅れた相手を例え5分間でも待つのも耐えられない人もいる。そして、1時間も相手を待つことが苦にならない人もいる。もちろん、それは誰を待っているかとかどんな状況かとかにもよるところが大きいだろうけれど、とにかく人それぞれの時間感覚があるわけだ。

 人にもそれぞれの時間感覚があるように、生物にはその生物それぞれの固有の時間間隔がある。しかも、それだけでなくて、

で考えたように、生物に限らずあらゆる系でその系固有の時間感覚があることだろう。だったら、ベガとアルタイルの間で信号が伝わりあう30年という時間はベガとアルタイル自身の時間感覚からすると、それは長いのだろうか、それとも短いのだろうか。一体、どんなものなのだろう?

 まずは、星の寿命を普通に考えてみれば、ベガもアルタイルも主系列星で、それぞれの重さから寿命を計算することができる。ベガとアルタイルと体重は本当はちょっと違っていて、女性のベガの方が実はちょっと太っているのだけど、あまり女性のベガの重さを正確に言ってしまうと、当然機嫌を悪くするだろう。だから、ちょっと大雑把に言うとベガもアルタイルも大体太陽の3倍位である。それを使って寿命を計算してみると、彼らの寿命は100億年位になる。人間の寿命の1億倍である。逆に言えば、ベガとアルタイルの時間感覚は人間の一億倍ゆっくりだということになる。それだけ、人間に比べて二人は気が長〜いのである。

 ところで、寺田寅彦・ロゲルギストなどが考えたように「系の寿命はそのものの大きさに比例し、それに応じた固有の時間感覚を持つ」として、ベガとアルタイルの時間感覚を適当に考えてみると、これが実はちょっと面白い。ベガとアルタイルの大きさはそれぞれ太陽の3倍、1.7倍なのだが、その程度の大きさの生物だと、その寿命は大体20億年位だという計算結果になる。これらの数字のオーダーからすれば、もうさっきの100億年という数字と全く同じだと言っても良いくらいである。まぁ、いずれにせよベガとアルタイルの時間感覚は人間の1億倍近く「気長」ということに変わりはない。

 すると、ベガとアルタイルの間の30光年- 信号が往復するのに30年かかかる-という距離は、彼ら二人にとってはどの程度の時間だろうか?人間より一億倍気が長いベガとアルタイルにとって、人間にとっての15年はどの程度の時間だろうか? 試しに計算してみると、

30年×365日×24時間×60分×60秒 / 1億 = 9.5秒
で、10秒弱ということになる。10秒というと、電話で話すというには無理があるかもしれないけれど、e-mailのやりとりよりにかかる時間よりはずっと短い。月に着陸しているアポロ宇宙船と地球との会話だって実は3秒近くかかる。ベガとアルタイルの間の「10秒(ベガ・アルタイル体感時間)」というのは、電話をしたり実際にベガとアルタイルが会って話をしたりするのには負けるだろうけれど、それでもメールをやりとりするのに比べたら、ずっと近い距離(時間)なのである。ベガとアルタイルはとても「近い」のだ。天の川の両側に離れていはいるけれど、やっぱり「近い」のである。
 
 

 そういえばベガというと、地球の歳差運動により、一万二千年後にはベガは地球から見て天の真北に位置することになる。つまり、一万二千年後には織女星ベガは北の空の中央で輝いて、その時彦星アルタイルは織女星ベガの周りを回り続けることになる。ずっと先のことに思えるかもしれないけれど、一万二千年後なんてベガとアルタイルの時間で言えばたったの一時間後である。一時間後(ベガ・アルタイル時間)には、アルタイルはベガの周りをクルクルと回っていることになる。なんだか、そんなベガとアルタイルがほほえましく思えてしまうのは私だけだろうか。何か、そんなベガとアルタイルをちょっとからかってみたくなるくらいに思えてしまう。
 

 ところで、そんな風にベガとアルタイルをからかうためではないけれど、アルタイルにかつて地球からメールが出されたことがある。スタンフォードの46mのパラボラアンテナからアルタイルに向けて、13枚の画像が送り出された。その13枚の画像は本当に子供の落書きのような過去の生物の画や人間の姿が描かれていた。そんな子供心いっぱいの画像もあるかと思えば、差出人(平林・森本)が二人とも飲むのが大好きだったので、メッセージの最後はアルコール分子の組成式で締めくくられていた。本当に、ちょっと間違えるとベガとアルタイルをからかうヨッパライになってしまいそうである。
 
 

アルタイルに送りつけられた画像

(「星と生き物たちの地球」 平林久、黒谷明美から)

 1983年に送ったメッセージはもう昨年にはアルタイルに届いているはずだ。アルタイルからメッセージが帰ってくるとすれば、それは2016年になる。あと15年先だ。15年なんて、アルタイルからすれば5秒弱(彼にとっては)であっという間の時間だし、私達人間にとってもやっぱり15年なんてあっという間の時間に違いない。もちろん、本当のところアルタイルからの返事が帰ってくるわけはないのだけれど、だけどそれでも「 はじめまして、アルタイルです…」なんてメールが帰ってくるときのことを想像するのもとても面白いことに違いない。もしかしたら、2000年にアルタイルから送り返されたメールの返事が宇宙空間を秒速30万kmで走ってくる途中かもしれない、と酔っ払った頭で夢想してみるのも楽しいことだろう。
 

 ところで、本来の七夕は旧暦の七月七日だから、今年の本当の七夕は八月二十五日ということになる。今夜七月七日を過ぎてしまったからといって、七夕が終わってしまうわけではない。これから続く夏の空を眺めつつ、ビールでも飲みながら、天の川とベガとアルタイルのことや、酔っぱらい達が送ったそんなメールのことを思い浮かべてみるのも、きっと風流で気持ち良いはずだ。星空の綺麗な高原で、あるいは星なんて見えないビル屋上のビアガーデンで。
 



■Powered by yagm.net