hirax.net::Keywords::「憧れ」のブログ



1999-12-30[n年前へ]

6502と並列計算とムーアの法則 

人間のクロック&スケールアップ


 「物理の散歩道」を読み直していると、とある文章に興味を覚えた。

  • 第五物理の散歩道 ロゲルギスト著 岩波新書
の中の「通信を考える」である。この本は、何度読み返しても新鮮である。

 「通信を考える」の中の興味を惹かれた部分は「信号の伝わる速度と距離と処理速度の関係」を論じている部分だ。例えば、計算機は処理速度を高めるためには回路の大きさを小さくしなければならないとか、人間の頭脳の働きの速さから集団生活の広がりの限界について論じているのだ。例えば、

  • 計算機の演算速度の時間スケール -> ナノ秒 = 10^-9s (クロックで考えると、1GHz)
  • 人間の演算速度の時間スケール -> サブ秒 = 10^-1s (クロックで考えると、10Hz)
ということから、計算機の大きさが0.12=1.2x10^-1m角として、地球の直径が12000km=1.2x10^7とすると、その空間スケールが先の時間スケールと同じ比すなわち10^8であると言及しているのだ。

 つまり、通信の速度が光速度であるとして、演算の単位クロックの間に通信が行われなければならないとするならば、計算機の時間・空間スケールと人間の時間・空間スケールは等しいだろう、という推論だ。
 
そして、さらにロゲルギストの想像は広がり、並列計算についても論じている。

 計算機が東京と大阪に離れて置かれていて、通信をしながら作業をするとしたら、人間の場合にはそれと同じ条件というのはどんなものだろうか、と彼らは考える。それは、光の速度で55時間、ちょうど冥王星の軌道直径の5倍程度の空間スケールになる、と論じている。それ以上、離れた場合には演算の過程を共に行うのは無理ではないかというのである。

 こういう文章を読んでいると、この文章が作られたのが30年以上前であることを忘れてしまいそうである。この人達の思索の自由さに憧れを感じてしまう。この人達は、頭の中にタイムマシンにでも持っているのだろうか、と感じてしまうのだ。

 ところで、私がコンピューターをいじるようになった頃は、Apple][の時代だった。といっても、私はお金があふれていたわけではないので、XXX電子でAplle][のコンパチ基盤を買って組み立てて使っていた。その基盤上の6502は1MHzで動いていた筈だ(あぁ、I/Oの6809派vs6502派の論争が懐かしい!)。

 それから20年程たち、CPUのクロックスピードは1GHzを越えようとしている。20年で1000倍である。そして、その集積度は、ムーア(GordonMoore)の法則の「半導体の性能と集積は、18ヶ月ごとに2倍になる」に従っている。

 それでは、人間はどうだろうか?人間の脳味噌のクロックがどの程度であるか測定されているかどうか、素人の私にはよくわからない。しかし、WEB上のデータとしては、例えば

というようなデータがある。ここでは、1演算/秒である。ロゲルギストの用いたものが10演算/秒である。これらは、かなり近い値と言える。もちろん、Mayoさんの演算速度はロゲルギストよりも一桁下であるわけだが、ロゲルギスト達と比べては可哀想というものだ。それに、おそらくMayoさんは謙遜しているのだと思われる。実はもう少し速いのだろう。それに比べて、私などは、二桁の演算(しかも足し算でも)になると1演算/秒もこなせるかどうか判らないくらいである。

 ロゲルギストの時代、すなわち30年以上前、から現在のMayo's Profileの値がほとんど変わっていないように、人間の演算スピードは変わるようなものではない。それは、そうだろう。ヒトのクロックスピードや集積度といったものは、変えるわけにはいかない。当然である。CPUと違ってプロセスルールを変化させるというような訳にはいかないのだ。

 それでは、演算性能を上げようとしたらどうするだろうか?そうなると、並列計算を行うのが自然だろう。単独のCPUの性能を上げるわけに行かなくても、共同作業を行えば、演算性能を上げることができる。

 現代はほとんどの作業が共同作業で行われる。また、その共同作業も大人数が関わるようになってきている。それは、どんな業種でも同じだ。一人では、なかなかできないことが多くなっている。
 それら共同作業、すなわち並列計算、を行う人達(例えれば並列計算機における各ノード)を増やし、それらの間の情報転送をすばやく行うことが多くの作業(計算)を行うための手順だろう。

 そこで、

で用いた
  • 人口増加( http://www.t3.rim.or.jp/~kabutoya/KABHTML/Yoi/2-1.html )
のデータをもう一度眺めてみることにしよう。

最近500年間の人口の変化

 なるほど、人間界の並列計算機におけるノード数は増加している。そして、各ノード間の通信速度を調べるために、まずは、

などの情報から、適当な通信の歴史を調べてみる。
西暦 内容
-4000 のろし
-2400 伝書鳩
-2300 馬による伝令制度
1837 モールス電信機
1876 ベグラハム=ベル電話機
1909 グリエルモ=マルコーン無線電話機
1973 Ethernet XeroxPARCで生まれる。(ちなみにEther=エーテル)
1979 DIX規格=10Mbps
1992 FastEthernet=100Mbps
 これを全部転送速度に直してみる。といっても、よくわからない部分も多いので、私が適当に決めてみる。それでは、その変化を示してみよう。とりあえず、ここ200年位の間のものを考える。
西暦 内容
1837 モールス電信機 = 2bps
1909 グリエルモ=マルコーン無線電話機=10kbps
1979 DIX規格=10Mbps
1992 FastEthernet=100Mbps
 という感じだ。グラフにすると、
最近200年間の情報伝送速度の変化

こんな感じである。対数グラフにおいて直線的に情報伝送速度が速くなっている。この関係は結構きれいである。
 別に意図してこういう数字にした訳ではないのだが、不思議なことである。
 このようにして、人間(ノード)間の転送レートが高くなることにより、先のような人口増加に伴うトラフィック増加をしのぐことができていると考えることもできるかもしれない。そして、人間達の共同作業、すなわち並列計算、を行うだけのバススピードを確保しているのである。

 最近、会社組織などで分社化とか事業分割とかの話題をよく耳にする。こういった時に、分割における時間と空間のスケールはよく考える必要があるだろう。分割が有効なのは、ほとんど独立なものを分割する場合のみである。並列計算における領域分割などと同じだ。

 共同作業がほとんどなく、結果のみをやりとりすれば良いような場合には分割による効果はあるだろう。その一方で、同じ事業・作業を行っているところが、離れていては作業の効率は上がらない。もし、技術系の会社でそのようなことを行うのであれば、事業や部署を並列化した際の真面目なシミュレーション位は行うべきだろう。いや、別に深い意図はないけど。

 こういったことは「新・闘わないプログラマ No.109 時代錯誤」に書かれていることとも少し似ているような気がする。

 さて、1999/12/30-2000/1/1は野沢温泉で温泉&スキーである。2000年問題で会社に泊まり込む人も多いが、私はスキー場で泊まり込みである。同時期に野沢温泉に行く人がいるならば、ぜひ一緒に「スキー場の特殊相対性理論」について討論したいと思う(スキー場で)。

2000-03-02[n年前へ]

掌サイズのゲームセンター 

20年前をポケットに入れて

  前に

で - CASIOのE-55に「英語技術文献の日本語要約 」を入れて持ち歩こう - という話題を書いた。そして、そのラストは
 このボディーの中に1995-1999のScienceのアブストラクトが詰まっているのである。
 あと、ゲームも…
であった。

 今回は、同じくPalmsize-PCで「ゲーム」をして遊んでみたい。しかし、そんなことを言うと「ゲームをするだけなのに、何故そんなにエラそうな口調なんだ」、と突っ込む人もいるだろう。そう言われたら、言い返す言葉もない。「ハイ、その通りです」としか言いようがない。
 しかし、私はゲームをほとんどしない。いや、最近は全くしない、と言っても良い位だ。だから、ゲームをするのにも、覚悟がいるのである。

 そしてもう一つ、自分ではしないゲームをしようと思ったのには、ちゃんとした理由がある。簡単に言えば、Palmを見返したかったのである。つねづね、世の中でもてはやされるPalmを見るたびに口惜しかったわけだ。

 私の周りにはPalmを使う人が多い。その人達は、「Palmは沢山ソフトがあって良いよ。」とか、「Palmsize-PCってPalmのバッタもんちゃうの?」とか言うのである。もちろん私も、世の中の流れがPalmsize-PCでなくて、Palmに向かっていることも感じてはいる。しかし、私はアマノジャクなので、「みんなが持っているPalmを買うのは面白くない」と思い、Palmsize-PCを買っているわけだ。

 しかし、そんな私にPalmユーザーは「やっぱ、世の中多数派に限るよ。」とか言うわけだ。しかも、根っからのMacユーザー(&Palmユーザ)であるにも関わらずそんなことを言う人さえいるのである。いつもは、「WindowsユーザーってMacユーザーに冷たいよなぁ。」とか、「良いものは所詮、少数派なのさ。」と言い合っているのにも関わらず、そんなことを言うのである。「少数派の誇りはどうしたぁ」と言いたくなる。しかし、これまではじっと我慢の子であったのである。

 そして、そんな私にPalmユーザーは楽しそうなゲームソフトなどを見せつけるのである。いや、もちろんPalmsize-PCにもそういうソフトはちゃんとあるわけであるが、どうも数から言うと負け気味だったのである(数えたことないけど)。

 そんなわけで、Palmsize-PCで沢山のゲームソフトが動く、というのが私の夢だったのである。そして、それをPalmユーザーに見せつけるのが、私の夢だったのだ(なんとも、小さい人間ではあるが…)。しかし、これまではそれは単なる夢だったのだ。

 しかし、最近

  • MameCE ( http://www.mamece.com/ )
が作られた。WindowsCE上で動くMAMEが出たわけである。そもそも、
  • MAME ( http://www.mame.net/ )
というのは、"MULTIPLE ARCADE MACHINE EMULATOR"の略であり、色々なアーケードゲームのエミュレーションを実現するソフトウェアである。簡単に言えば、スゴイソフトである。MAMEさえ動けば、数え切れない程のアーケードゲームを動かすことが出来るのだ。Palmsize-PCがPalmに一発逆転できるの可能性があるのだ(ゲームの数に関してだけ、そして、ROMがあればの話)。

 というわけで今回の話は、私の周りのPalmユーザーに捧げたい。「Palmsize-PCで数え切れないゲームを動かしてみる」という話なのである。「こんなにゲームが動いてしまって良いのかしら?」という話なのである。

 それでは、その画面を見せつけてみたい。私の好きだったゲームを動かしてみるのだ。掌サイズのゲームセンターを実現するのである。

 それが、以下の写真である。これはCASIO E-500でMameCEを動かしている画面である。まずは、シューティングゲームの両雄、「スペースインベーダーとギャラクシアン」である。
 

スペースインベーダー(左)とギャラクシアン(右)

 そして、次がパックマンと後の有名人マリオのデビュー作でもあるドンキーコングだ。パックマンの画面の面白さは実に素晴らしい。
 

パックマン(左)とドンキーコング(右)

 しかし、こうしてみると私が気に入っているゲームは実に古いゲームばかりだ。ROMに書かれている制作年を示すと、

  • スペースインベーダー 1978年
  • パックマン 1980年
  • ドンキーコング 1981年
  • ギャラクシアン 1981年
という感じである。懐かしのゲーム大特集だ。遙か20年も前のゲームばかりである。いや、たった20年前だろうか?何か、ポケットの中に20年前を入れているような気分になってくる。20年前に憧れたゲームセンターのゲームが掌の中で動いているのだ。

 こうしてみると、時の流れはなんて速いのだろう。ビックリしてしまう。いつの間にか、年をとってしまったのである。

 しかし、そうそう驚いているだけではマズイ。そんな「早い流れゆく時の中を、軽やかに駆けめぐりたい」と私は強く思うのである。「Palmユーザーと張り合っている場合ではない」のである。少し、後悔である。どうも、私は「後悔先に立たず」というのが多すぎなのである。

 というわけで、「流れゆく時の中を軽やかに駆けめぐりたい」という気持ちを示すために、1982年の作品である「タイムパイロット」を最後に示して終わりにしよう。時間の流れの中を飛行機で飛び回るのだ。BGMは10年経っても古さを感じさせない、そう「浪漫飛行」なんか良い感じだ。
 

タイムパイロット(BGMは浪漫飛行)
トランク一つだけで
浪漫飛行へIn The Sky
飛びまわれこのMy Heart
  
時が流れて…
 
 

 この画面の真ん中にいる飛行機 - 時を駆けめぐる飛行機 - を操縦する「タイムパイロット」がぼくらだ。そして、「タイムパイロット」は自由自在に時の中を駆けめぐるのである(もし、上手ければね。あぁ、また撃墜されたぁ…)。
 

2001-03-04[n年前へ]

柿ピーのシーソー・ゲーム 

柿とピーナツの供給バランスを考える

 結婚しようとするカップルが少しばかり気にした方がよいのが、「柿ピーの好み」である。知らない人がいるとは思えないが、念のために書いておこう。柿ピーと言えば、柿ピー= 柿の種 + ピーナッツであって、亀田製菓の大ヒット商品である。そして、何と言ってもビールの安上がりのおつまみだ。
 

いわゆるひとつの「柿ピー」

 この「安上がりで手軽なおつまみ」というところが、結婚しようとするカップルにはとても重要である。何故なら、結婚する前のカップルであれば洒落た店で飲むことも多いかもしれないが、結婚後はなかなかそうはいかない。いつの間にか手に持ったワイングラスは缶ビール(しかも発泡酒)に変〜身し、「テーブルの上の豪華な食事」はちゃぶ台の上の亀田製菓の柿ピーにバケラッタしているのである。

 そうなると、かつては「このソースとても美味しいよね。うふっ。」なんて言っていた二人も変わらざるをえない。そりゃそうだ。柿ピーを目の前にして、気取ってみてもしょうがないわけだ。そんな時、こんな会話に走りがちである。

「柿の種ばっか、食べないでよ!」
「オマエこそ、ピーナッツどんどん食えよ!」
そう、柿ピーがなまじ「柿の種 + ピーナッツ」なので、片方がどんどん減っていったりすると、これがもう大変。かつては、ワインを片手に愛を語らっていた二人も、今やビール(しかも実は発泡酒)を片手に食い物の奪い合いをすることになるのである。

 これが、カップルの二人がとても似たもの同士で、「私達二人とも柿の種がスゴ〜ク好きだから、ピーナッツなんかいらないの。だから、- 柿の種だけが100%入った柿の種 - を買うの!」なんて感じなら、もちろんノープロブレムだろうし、あるいは、「ぼくらは、ピーナッツだけを買うのさ!」という感じのカップルでも同様だろう。
 

そんな二人のための「柿の種だけが100%入った柿の種」

 あるいは、もう「ぼくは柿の種が好きだけど、きみはピーナッツが好き。二人は違っているから良い組み合わせなのさ。柿の種はぼくがどんどん食べるから、君はピーナッツをお食べ」なんてカップルでもいいだろう。こちらも、「ひとまずは」ノープロブレムである。つまりは、全く同じが正反対のカップルであれば、大抵の場合ほとんど問題はないのである。

 しかし、「柿ピーは柿の種とピーナッツが適当な割合で入っているから良いのさ」なんていうグルメ気取りのカップルがいたりすると、大変である。

「アンタの食べる割合、少しおかしくない?」
「何言ってんだよ!オマエの方が柿ピー食べ過ぎだってんだよ!」
「そんなことないわよ!」
となるのは必至である。この数分後には、巨人の星の一徹父ちゃんのごとく、ちゃぶ台はひっくり返されているのに違いないのである。柿ピーの割合恐るべしだ。

 そして、しかもこれが理系カップルともなれば、もう最低だ。

「柿とピーの割合は7:3で食べなさいよ!」
「違うだろ、6:4が適正値に決まってるだろ!」
「そんなにピーナッツを食べたいなら、柿ピーじゃなくてピー柿にしなさいよ!」
「別にピーナッツが過半数を超えるほどがイイって言ってんじゃねぇ〜!」
「何よ、もっと定量的に話しなさいよ!」
という具合になるに決まっているのだ。このままいくと、柿ピーを前にして離婚談義にもなりかねない。なんともオソロシイ話である。(* ピー柿は7:3でピーナツの方が多い。そんなのが実在することが私にとっては驚きである。)

 そういうわけで、「柿ピーの好み」「柿ピーの割合」「柿ピーの消費の割合」なんていうものは、結構結婚しようとするカップルには重要なのである。結婚しようとするカップルはぜひとも心して聞いておいてもらいたい。とはいえ、モテモテ度テスト

「女にモテない、というより、女に興味がないオマエ。今、一番気になることがドリキャスの値下げだったりなんかしない? まーそれも人生だけど、モテたほうがおいしいことは多いぜ? もうちょい女に関心持てよ。」
と判定された私が言っても説得力がないか。
 

 ところで、そもそも柿ピーの割合はどのくらいが普通なのだろうか?WEBで検索してみると、柿ピー10に対して

  • 柿の種 : 7〜6
  • ピーナッツ : 3〜4
が普通であるらしい。作っている方も、食べる方も結構ウルサ方が多いらしく、結構その割合について書いてあるサイトも多かった。

 そこで、試しに私も手元にあった小袋入り亀田の柿ピーの中身を調べてみた。調べたのは「小袋入り亀田の柿ピー」である。
 

小袋入り亀田の柿ピー

 この一袋の中身を開けてみると大体こんな感じである。
 

一袋に入っていた柿ピー

 もちろん、単に数えても良いわけではあるが、「クダラナイことに、無意味なほどに大ゲサな道具を使うのがこのサイトのポリシー」でもあったりするので、まずは画像処理ソフトを使って柿の種とピーナッツの個数をカウントしてみた。使ったソフトはUTHSCSAImageTool である。PCベースでフリーでお手軽で粒子カウントとなるとこのソフトになるだろう。もちろんNIH-imageベースのScionImagePCという選択肢もないわけではないが、こと粒子カウントになるとはるかにImageToolの方が使いやすい。マクロの取っつきやすさ(機能は較べものにならないほどおちるが)もNIH-image系よりも上である。

 さて、まずは上の画面内で柿の種を粒子カウントしてみたのが次の画面だ。この画面では見つかった柿の種は赤い縁取りがされ、個数がマーキングされていることがわかると思う。ちなみに、この画面内では93個の柿の種が見つかった。しつこいようだが、「数えた方が早いだろっ!」というツッコミはこの「できるかな?」では厳禁である。
 

柿の種は大体100個
ちなみにこの画面では93個

 同じようにして、ピーナッツをカウントしてみたのが次の画面である。この画面では、ピーナッツは23個見つかった。
 

ピーナッツは大体20個
ちなみにこの画面では23個だった

 すると、個数ベースでピーナッツが23/(93+23) = 20%で、残りが柿の種で80%ということになる。柿ピーの割合は大体8:2であったことになる。確か、WEBの亀田製菓に関する情報では

「柿ピー」のブレンドは、柿の種6に対してピーナッツ4が基本
と書いてあったような気がするので、今回の8:2というデータは測定誤差、とその他の何らかの誤差が重なったものだろう。いや、そんな誤差はどうでも良いか。
 

 ところで、大きな袋に入った柿ピーを食べながらよく考えることがある。私は柿の種が大好きなので、柿の種ばっかり選んで食べていくと、袋の口近くの上の方にはピーナッツばかりが残り、明らかに袋の場所ごとに柿の種とピーナッツの割合が異なってしまっていることがよくある。この柿の種とピーナッツの割合の時間的・空間的変化は一体どうなっているものだろうか?そこで、今回その「ピーナッツの柿ピーに占める割合の時間・空間的変化」について、少し考えてみることにした。
 

 まずは簡単に判るように、袋の中から均等に柿の種とピーナッツを「柿ピーの割合を適当な割合で」食べていった場合、「ピーナッツの柿ピーに占める割合」は次の図のようになる。この図は横軸が時間で、縦軸がピーナッツの柿ピーに占める割合である。
 

ピーナッツの柿ピーに占める割合の時間的変化
青 : 柿ピーを8:2の割合で食べた場合
緑 : 柿ピーを8:3の割合で食べた場合

 今回の場合柿ピーは8:2で入っているので、青の場合のように柿ピーを8:2の割合で食べていくと、時間にして10分後に柿ピーがなくなるまで、ピーナッツの柿ピーに占める割合は20%をキープしたままである。しかし、(少しばかりピーナッツが好きな人が)柿ピーを8:3の割合で食べてしまうと、つまりピーナッツを過剰に食べてしまうと、どんどんピーナッツの割合は減ってしまい、ついに8分経過後にはピーナッツが袋の中から無くなってしまうのである。つまり、あとの2分は悲しみと共に柿の種を食べ続けなければならないのである(私は柿の種が好きなので悲しくもなんともないが)。

 じゃぁ、袋の中の空間的分布も考えてみたらどうなるか、というのを次に計算してみた。まずは、袋を大きく二つに分けて、袋の入り口で適当な割合で柿ピーを食べた後、袋の奥から袋の入り口の方へ柿ピーを持ってくる。また、その際に適度に柿ピーをかき混ぜる。そして、柿ピーがなくなるまで柿ピーの割合の変化を調べてみるのである。ちなみに、IE4以降+Excel2000以降?の人であれば、ここをクリックすれば、その計算シートで遊ぶことができると思う。

 例えば、「柿ピーを8:2の割合で食べた場合」と「柿ピーを8:5の割合で食べた場合」のピーナッツの柿ピーに占める割合の時間・空間的変化を調べてみたのが、次に示す結果である。ちなみに、このいずれも横軸は時間である。また、時間軸にして30前後の時点で柿ピーは完全になくなっている。
 

ピーナッツの柿ピーに占める割合の時間・空間的変化
左 : 柿ピーを8:2の割合で食べた場合   右 : 柿ピーを8:5の割合で食べた場合

ちょっと計算上の誤差が大きいが、それはちょっと無視してもらいたい。

 さて、左の「柿ピーを8:2の割合で食べた場合」、つまり本来の柿ピー比と同じ割合で食べていった場合には、入り口近くでも奥の方でも柿ピーの比率は変わらない。そして、入り口の方から柿ピーを取った分を、奥の方から補給しているので、奥の方では時間軸20の時点で空になってしまっている。左の図でピーナツの割合がゼロになっているように見えるのは、実は単に柿ピーがなくなっただけなのである。そして、入り口近くの柿ピーが時間軸30の時点で空になっているまで、柿ピーの比率は変わることはない。当たり前だ。

 では、「柿ピーを8:5の割合で食べた場合」はどうだろうか?つまり、本来の割合よりもピーナッツを多く食べがちな人の場合だ。そんな場合の右を見てみると、奥の方は単に入り口近くに柿ピーを補給しているだけなので、柿ピーの割合は変わらないままだ。しかし、入り口近くではあっという間にピーナッツの割合が減ってしまっている。ほとんどなくなっている、といっても良いくらいの状態である。つまり、ピーナッツ大好き人間にとっては、手の届く袋の入り口近くには全然ピーナッツがないという、拷問状態なのである。周りに女子校や共学の学校はあるけど、自分の通う学校が男子校だったみたいなキツイ状態である。ちなみに、私は高校時代に私服の共学の学校に通った結果、制服の女子高生に強い強い憧れを抱くに至ったことを否定できなかったりするのである。
 

 話を戻して、それでは「袋を適当にかき混ぜながら」、「柿ピーを8:5の割合で食べた場合」はどうなるだろうか?というのが次の結果である。こうすると、奥の方のピーナッツもどんどん消費されているのがわかる。入り口近くも奥の方も、同じようにどんどんピーナッツの割合がどんどん減ってしまい、時間軸15の時点で完全になくなってしまっている。あとは柿の種がなくなる時間軸30の時点まではもう柿の種と向かい合うだけの人生なのである。ツラすぎる(ピーナッツ好きの人にとっては)。私の知人のオッパイ星人が結婚後に妻から、

「アンタはもう貧乳とだけ向き合う人生なのよ。」
と言われ、涙をこぼしていたのを連想させるような「柿の種人生」が待っているのである。

*一部、不適当な発言がありましたことをお詫びします。
 

「袋を適当にかき混ぜながら」、「柿ピーを8:5の割合で食べた場合」
柿ピーの袋の奥の方でも入り口近くでもピーナッツがすぐになくなっていく

 つまりは、ピーナッツが食べたいからといって、あまり柿ピーの袋をかき混ぜるのは良くないということなのである。もちろん、短期的にはピーナッツがたくさん食べることができて良いわけであるが、長期的に見ればその後の長い「柿の種人生」が待っているのである。それが端的にわかるのが、次の「ピーナッツをどれだけ食べているか」を示す結果である。

 この結果の中で、上の方に示した「柿ピーの袋をかき混ぜない場合」では、結構最後までピーナッツを細々と食べていけることがわかるだろう。柿ピーがなくなるのが時間軸で30前後の時点であるが、その少し前23位の時点までピーナッツを食べていけるのである。それに対して、ピーナッツを早く食べたいばかりに、柿ピーの袋をかき混ぜまくりの下の「柿ピーの袋をかき混ぜた場合」には、時間軸で13前後の時点でもうピーナッツがなくなってしまっている。もう、コイツには「柿の種人生」しか残されていないのである。
 

「ピーナッツをどれだけ食べているか」の時間変化
横軸 : 時間、 縦軸 : ピーナッツの消費数
 

柿ピーの袋をかき混ぜない場合

結構最後までピーナッツを細々と食べていける


 
 

柿ピーの袋をかき混ぜた場合

なんとも、太く短くのピーナッツの食べ方である…


 

 とはいえ、柿ピーの袋をかき混ぜながら太く短くピーナッツを食べるか、それをじっとガマンの子で細々と最後までピーナッツを食べるか、どっちが良いかは難しいところだ。ちなみに、私はかき混ぜまくりで柿の種を食いまくり、残ったピーナッツは人にプレゼントするというとても良い性格である。だったら、100%柿の種を買えって感じであるが、売店には置いてないことも多いから、しょうがないのである。
 

 というわけで、今回はビール(やっぱりあくまで発泡酒)を左手にそして柿ピーを右手でつまみながら、酔っぱらった頭で(いつものことだが)、ツマラナイことを考えてみた。モノが本当の柿の種であればオチて芽が出るのが普通なのだけれど、今回の柿ピーの話はオチがあるわけでも芽が出るわけでもない。酔っぱらいのタワゴトだから意味なんか全然ないのである。と、日記には書いておこう(意味不明)。
 

2001-03-16[n年前へ]

今日のBGM 

 C/G/Am/Fの単なる繰り返しだけど、シンクロニシティコンサート版の方のこの曲は大好きだ。そういえば、Policeみたいな強力三人構成バンドは憧れだったなぁ。(リンク)(リンク)(リンク

2001-06-21[n年前へ]

二十一世紀の「ミニスカートの幾何学」 

可愛いAIBOはちょっぴりエッチ

 「面白い記事がありましたが、読みましたか?ふふっ(笑)。」というメールが先日私に届いた。さてさて、一体どんな記事だろう?うむむ…?と見に行ってみると、それはZDNNのこんな記事だった。

SONYが"AIBO Navigator"というソフトウェアを製品化し、そのソフトウェアを使えばAIBOをPCから遠隔操作することができるというのである。なんでも、無線LANを使って、AIBOの頭部に搭載されたカメラの画像をPCで見ながら、AIBOを自由に動き回らせることができるらしい。しかも、それだけではなくて、音声を聞いたりAIBOが見ている映像を静止画撮影をしたりすることもできるらしい。なるほど、面白そうだ。鉄人28号もビックリである。さすが、二十一世紀になっただけある。

 しかし、しかし、である。これだけでは、先のメールの書き主が私にわざわざこのニュースを知らせてくれる理由がわけ判らないではないか。私はお茶ノ水博士のようなロボット博士でもなければ、TVチャンピオン常連のおもちゃオタクでもないのである。ましてや、先のメールの「ふふっ(笑)」は奇奇怪怪としか言いようが無い。もしかしたら、これは新手のAIBOの売り込みだろうか?あのSONYもついにSPAMを出すようになったか、あのSONYがなぁ、と思いつつ記事を読み進んでいくと、記事の終わり近くになってやっと疑問は氷解したのである。その部分を少し引用してみると、

 今回,遠隔撮影を可能にするAIBO Navigator開発にあたって,ソニー社内でも盗撮問題が再浮上。AIBOを担当するエンターテインメントロボットカンパニー内に「倫理委員会」を設置するなど,盗撮問題に対して真面目に取り組んだという。
 「AIBOのアタマが,ある角度以上に上を向くと,見てはいけないものが見えてしまう」(ソニー)ということで、倫理委員会では、まず盗撮される側のデータを収集。女性の平均身長の調査から始まり、短いといわれているミニスカートの丈の長さを実際に定規で測って調べ、AIBOの頭部カメラがどの角度までなら大丈夫かをさまざまな角度から調査。その結果、可動角度を最大20度とし、首の位置が20度以上動くようなモーションをしなくてはいけないときは、動画が止まる機構までも装備した
ということだそうだ。なるほど、これはまさにである。理系学生の憧れナンバー1といえばソニーであるが、そのソニーの「真心」とも言うべきソニーの「倫理委員会」と私は同じような「研究」をしていたわけである。「女性のためのミニスカート理論の構築を目指していた」ミニスカートの幾何学はまさに「真心・倫理」を具現化した研究と言っても良いくらいであるが、やはり判る人には判るのである。先のメールの主は私に「あなたのレポートはまさに日本の倫理のために役立っているのですよ」と教えて下さっているに違いないのである。もっとも、残念なことに私はソニーの倫理委員会と違って「短いといわれているミニスカートの丈の長さを実際に定規で測って調べたり」する機会には恵まれなかったのである。

 が、そんなことはさておき、「角度で20度までなら、見てはいけないものが見えない」というのは本当だろうか?それは、ミニスカートの幾何学で調べるとどういうことになるのだろうか?というわけで、このナゾについて少し考えてみたい、と思うのである。

 というわけで、まずは「ミニスカートの幾何学」の復習をしよう。ミニスカートの内側の下着が見えるか、見えないかを考えるには次のような図を考えると判りやすい。ここでは女性の真下の地点を原点にとり、水平方向にX軸をとり、鉛直上向きにY軸をとっている。
 

ミニスカートの幾何学 (縦軸=鉛直方向、横軸 = 女性からの距離)

 スカートの内側の「見てはいけないもの」が見えてしまうのは、上の図で緑の線よりも下側に入って、その緑の線より上を見上げた場合である。そして、ここでその緑の線は

  • 女性の下着の一番下の部分の位置
  • ミニスカートの一番端の下の位置
を結んだ直線ということになる。AIBOがこの緑の線よりも下の位置に可愛くトコトコ歩いてきて、そして、緑の線の角度よりも首を見上げた瞬間に、スカートの内側の「見てはいけないもの」がAIBOの目を通してAIBONavigatorを操るPCの画面に写ってしまうわけである。その角度が、可愛いAIBOがチョッピりスケベに変身してしまう限界角度なのである。

 それでは、その「限界角度」を調べるために、とっても簡単「ミニスカートの幾何学」を活用しよう。まずは、例えば女性のヒップ周りが88cmとしてみた場合に、スカート中央から端までの長さ(rcm)は、女性のヒップを円と近似すると、

2πr = 88cm
であるから、スカート中央から端までの長さ(r cm)は
r = 14cm
となる。すると、図を見ればわかるように、緑の線 -> 「下着防衛ライン」はスカートの丈を未知数として、
y = - ((スカートの丈 - 25)/14) x + 股下長さ
という式で表すことができるわけだ。ここで、「AIBOがそれ以上上を向くと見てはいけないものが見えてしまう」という緑の線の角度
ArcTan[ (スカートの丈 - 25)/14 ] / (2 π)*360
で表されるから、それを計算してみて、「スカートの丈」に対する「見てはいけないものが見えてしまう」限界角度を計算してみると、その結果は次のグラフのようになる。
 
 
「スカートの丈」に対する「見てはいけないものが見えてしまう」限界角度
横軸 : スカートの丈 (cm) 
縦軸 : 「見てはいけないものが見えない」限界角度 ( ° )

 このグラフを見れば判るように、女性のスカートが長くなれば長くなるほど、「見てはいけないものが見えてしまう」限界角度は大きくなる。当り前である。長いスカートの中を覗こうとしたら、AIBOはそのスカートの中へ入り込んで、かなりの上を見上げなければならない。もちろん、スカートの丈が短くなればなるほど、スカートの中身は覗きやすくなる。そうすると、AIBOがそれほど上を見上げなくても、「見えてはいけないもの」が見えるようになってしまうのである。

 さて、前回の「ミニスカートの幾何学」では女性達が履くスカートは短くても32cmまでであって、その長さであれば角度が30°ほどにもなる急な階段でも女性のスカートの中の「見えてはいけないもの」は見えることが無い、ということを明らかにした。というわけで、それを知ってか知らずか女性達の履くスカートは短くても32cmまでなのである。だとすれば、その32cmに対応する限界角度は「見てはいけないものが見えるための必要角度」ということになるわけである。

 すると、このグラフを見れば一目瞭然、スカートの下限「見てはいけないものが見えてしまう」限界角度は20数度よりも大きいことが判るのだ。ということは、先の記事の通りに、AIBOの首の上限角度を20度にしておけば、もうどうやってもAIBOはスカートの中身を覗くことができなくて、AIBOが盗撮者の手先となってしまう危険は防ぐことができるのである。それより上を眺めれば、見たことのない映像が見ることができるハズなのではあるが、ロボット三原則に基づいて(大ウソ)、AIBOの首はそれより上には上がらないように設計されているわけである。

 というわけで、こんな風にソニーの「倫理委員会」がうらやましいばかりの数々の実験を重ねて調べたことも、このミニスカートの幾何学から導き出すことができるのだ。あぁ、なんて社会の役に立つ研究なのだろう。こんな女性のため、社会正義のための幾何学がこの他にあるのだろうか…。しかし、そんな社会正義のための研究だったハズなのに、この「ミニスカートの幾何学」をきっかけにしてhirax.netが色モノサイト扱いされ、さらには有害サイト扱いされるようになるとは… 思いもしなかったなぁ…   ふっ… (涙)…。
 
 



■Powered by yagm.net