1999-09-17[n年前へ]
■モアレ、デバイス、2項分布の三題話
淡色インクの副作用
今回は、9ヶ月間も寝かせた伏線にまつわる話である。いや、別に寝かせるつもりは無かったのだが、いつのまにかそんなに時間が経ってしまった。
以前、
という話があったが、その2つを結びつけるミッシングリンクについて考えてみたいと思う。「2項分布のムラについて考える(1999.01.08)」の最後に「今回の話はあることの前準備なので、これだけでは話しが全く見えないかもしれない。というわけで、続く...」と書いた。「その続き」というわけである。始めに「2項分布のムラについて考える(1999.01.08)」の要点をまとめると以下のようになる。それは、
- ランダムと呼ばれるものの内で代表的な2項分布においては、当然のごとく「ある領域での平均値はばらつく」。
- そして、そのばらつきは直感的に考える程度よりももっとばらつく。
- 例えば、2値画像で考えるならば、2048dpi程度の解像度でランダムなデータを並べた場合には、人間の目はざらつきを感じてしまう。
そして、「モアレはデバイスに依存するか?(1998.11.20)」での要点は
- モアレにはデバイス依存性がある
- 線形な重ね合わせが成り立たない場合にはモアレが発生する。
最近のインクジェットプリンターはCMYKの4色インクだけでなく、淡色インクも使うものもある。淡色のインクを使うことで階調豊かな画像を印字できるわけだ。4色インクだけではディザなどを使って、解像度を下げて階調を出さなければならないわけであるが、それが不要になるわけだ。
解像度を下げないですむわけであるから、ディザのざらつきを感じないですむわけだ。しかし、淡色のインクを使った場合の効果というのはそれだけではないように思われる。HP(ヒューレッドパッカード)などのWEBのプリンター紹介を読んでいると、「淡色のインクを重ねて濃度を出す」というような記述を目にする。これは「少なくとも淡色インクでは線形性(あるいはそれに近い関係)が成り立つ」ということだ。
インクジェットプリンターの解像度を上げたときに、インク滴が意図しないところへずれてしまうことはきっとあるだろう。その際に他のインク滴と重なったらどうなるだろうか?意図しなくても他のインク滴との重ね合わせは発生してしまうだろう。
重ね合わせが成り立たない、非線型なインクではモアレが発生する。言いかえれば、意図しない濃度のばらつき・ざらつきが発生してしまう。「2項分布のムラについて考える(1999.01.08)」で考えたようにランダムに重ね合わさるから広い領域では一定だろうというのは予想外に成り立たないのである。でたらめというのは私の予想外に大きく効いてくるのである。
しかし、重ね合わせに線形性が成り立つ淡色のインクではモアレが発生しない。すなわち、いくらランダムにインク滴の重ね合わせが生じてしまったとしても、意図した通りの濃度をだすことができ、ばらつき・ざらつきは発生しないことになる。参考までにインクジェットの印字画像の拡大写真を示してみる。
「重ね合わせに線形性が成り立つ淡色のインクではモアレが発生しない。すなわち、いくらランダムにインク滴の重ね合わせが生じてしまったとしても、意図した通りの濃度をだすことができ、ばらつき・ざらつきは発生しない」と、書いただけでは意図するところが伝わらないと思うので、「モアレはデバイスに依存するか?(1998.11.20)」で使った画像を用いて考えてみる。この画像は重ね合わせがある幾何学模様で生じているが、この現象がランダムに起こっているものとして読み替えて欲しい。
下は、淡色のインクで重ね合わせ(インク滴の意図しない重なり)が生じた場合である。
なんの模様も生じていなく、意図した通りの画像出力ができているのがわかると思う。
ということで、今回の話(というか前の2回の話)の繋がりは、
淡色のインクを用いたインクジェットプリンターでは、意図しないインク滴の重ね合わせが生じてしまっても、濃度変化が生じにくく、意図しないインク滴の重ね合わせがでたらめに発生してしまったとしても、画像にはあらわれない可能性があるということである。
うーん、マニアックな内容だ。「身近な疑問を調べる」という看板に偽り有り、である。しかも単なる推論だ。
しかし、もしもインクジェットプリンターを買う人がいるならば、淡色のインクを使っているものを購入するといいかもしれない、ということがわかっただけでも良しとしておこう。
1999-11-23[n年前へ]
■ミニスカートの幾何学
32cmの攻防戦
早朝、東名高速で事故渋滞にはまってしまった。仕方がないので、TVを眺めていると、面白い話をやっていた。それは、ミニスカートの丈の話である。何でも、最近の流行はミニスカートの丈が32cmのものであるらしい。女子高生?などが言うには、
「34cmだと長いしぃ。」だから、32cmだと言うのだ。別に、オリンピック選手でもないのだから、ミニスカートの丈の限界まで挑戦しなくても良いだろう、と私などは思ってしまう。しかし、彼女たちはそう考えないらしい。人それぞれである。
「30cmだと下着が見えちゃうしぃ。」
それにしても、スカートの丈が32cmと30cmの間でそんなに、違いがあるものだろうか? 「見える・見えない」を決める分水嶺がその2cmの違いにあるものなのだろうか? 妙に不思議である。 そこで、ミニスカートの幾何学について考えてみることにした。題して「32cmの攻防戦」である。
何より先に確認しておくが、私は今回は科学的好奇心で動いているのである。そこに、一点の不純な気持ちも存在しないことを、ここで確認しておく。いや、むしろ、女性のためのミニスカート理論の構築を目指しているといっても良いかもしれない。といっても、信用されないとは思うのであるが...
さて、先のTV番組によれば、腰からスカートの先までの長さを「スカートの丈」というらしい。また、先のTV番組により、「腰から下着の一番下の部分(股下を計るときの一番上)までの長さが大体25cmである」という重要な情報を得ることができた。
それでは、解析を始めてみよう。以下に、今回考えた「ミニスカートの幾何学」を示す。なお、今回使用する長さの単位は全て(cm )である。
まず、階段の途中に立つミニスカートを履いた女性の下着中央部分とミニスカートの最下部を結ぶ直線を考える。この線よりも下が、下着が見えてしまう領域である。もちろん、階段の下には潜り込めないわけであるから、その線と階段で囲まれた領域内から見た際に下着が見えてしまうわけだ。その線のことを「下着防御ライン」と呼ぶことにする。
さて、ミニスカートの形状を考えよう、スカートの丈はもちろん入力条件としてわかる。すると、足りないパラメータは幅である。そこで、ヒップ周りが88cmとしてスカート中央から端までの長さ(rcm)を求める。2πrが88cmであるから、
r = 14cmとなる。
また、駅などの階段というと25度位だろうか。30度というとかなり急な階段である。湘南通商の階段とか急な階段は色々あるが、今回は急な階段の斜度として、25-30度位としておく。ちなみに、京都駅北口のエスカレータで実測したところ、25,6度であった。
それでは、スカートの丈が32cmで階段の角度が30度である場合の計算をしてみる。女性の股下は仮に70cmであるとしておく。おそらく、身長160cm位であれば、この程度であろう。
それでは、ミニスカートの丈が32cm、30cmの時の「下着防御ライン」を計算したものを示す。
緑、すなわち、ミニスカートの丈が32cmの時は「下着防御ライン」は階段とほぼ平行である。それに対して、丈が30cmの時の「下着防御ライン」は、ミニスカートを履いた女性から離れるほど階段よりも上に離れていく。ということは、人間の視点位置が「下着防御ライン」を越えるということである。すなわち、下着が見られてしまうということだ。
階段と「下着防御ライン」の差、すなわち、人の目の高さがこの程度ならミニスカートの下の下着を見ることができる、というものを示してみる。
32cmの丈の場合、10m(1000cm)離れても、目の高さが150以下の人しか「下着防御ライン」を突破できない。すなわち、女性は事実上「下着を見られる恐れがない」といって良いだろう。もちろん、20mとか離れたら別である。しかし、超人的な視力がなければ、そのような条件下で下着を確認することはできないであろう。
それに対して、30cmの丈の場合には6m離れた時点ですでに視点が2mの位置にある人でも「下着防御ライン」を突破できてしまう。これでは、「全ての人に下着を見られてしまう」ということになる。
もし、女性の身長が20cm程度高く、180cm程度であったら、どうなるだろうか。おそらく、股下長さは10cm程度長くなる。すると、上の図(階段と「下着防御ライン」の差)の緑、赤ラインは10cm程度高くなる。それでも、緑の32cmスカートの「下着防御ライン」はやはり安全圏といえるだろう。
また同様に、厚底サンダル・ブーツなどを履いた場合には股下長さが20cm弱高くなると考えられる。この影響を考えると、長さとしては身長の影響よりも大きいわけである。それは、身長の1/2が股下長さの増加に繋がるのに対し、厚底靴の長さはそのものずばり股下長さの増加に繋がるからである。しかし、それでもやはり緑の32cmの「下着防御ライン」は安全圏である。
すなわち、32cmと30cmのスカートの丈の長さの間には、「下着が見える・見えない」に関する分水嶺が確かに存在するのだ。先の、
「30cmだと下着が見えちゃうしぃ。」という発言は理論的に裏付けられたのである。
それでは、次に階段の角度が25度である場合の計算をしてみる。
緑の線、すなわちスカートの丈が32cmの場合の「下着防御ライン」が階段にどんどんすり寄っているのがわかると思う。すなわち、「下着防御ライン」はより強固なモノとなっているのである。階段と「下着防御ライン」が女性から離れるほど近づくのである。次に、階段と「下着防御ライン」の差を見てみよう。
緑線、すなわちスカートの丈が32cmの場合に注目する。 女性から、離れても、近づいても、何人たりとも、下着を見ることはできないのだ。下着がシュバルツシルト半径の中に隠されるといっても良い。女性の安全を確保する「完全安全条件」を満たす「下着防御ライン」が完成されているのだ。
これは階段と「下着防御ライン」が平行である条件を境として、そのような条件が達成される。その条件よりより「下着防御ライン」が強固になると、誰も「下着防御ライン」を突破することはできない。すなわち、「完全安全条件」が達成されるのである。
この絶対に下着を防御可能(「完全安全条件」)な「完全安全条件」とは、階段と「下着防御ライン」が平行である条件であるから、ミニスカートの丈(xcm)をパラメータとして、
Tan[階段の角度] = (x-25)/14で計算することができる。ここで、14は腰回りの半径(cm)であり、Hip88cmの人の場合である。もちろん、極端な安産体型の場合には、その14という値を適当に補正する必要がある。
さて、この条件には女性の身長(股下長さ)は関係しないところが面白い。もちろん、厚底サンダルなどを履いても同じである。もちろん、若干の影響はあるが、あまり影響はない。
さて、今回の「ミニスカートの幾何学」の考察により、判明した結果をまとめてみよう。
ミニスカート内部の下着が「見える・見えない」には
- ミニスカートの丈が30cmと32cmの間に、分水嶺が確かに存在する
- 絶対に下着を防御可能(「完全安全条件」)なミニスカートの丈(x cm)とは、Tan[階段の角度]= (x-25)/14 により決定される
- ここで、14は腰回りの半径(cm)であり、Hip88cmの人の場合である
- 極端な安産体型の場合には、その14という値を適当に補正する必要がある
- 一方、ミニスカートを履いている人の身長はほとんど影響を及ぼさない
- 厚底サンダルの方が身長よりは影響を及ぼすが、それでもほとんど影響はない
ミニスカートを身につける女性の経験に基づく、「30cmだと下着が見えちゃうしぃ。」理論はなかなか正しいことがわかる。経験というものを軽んじてはいけない、という良い?例かもしれない。結果の伴わない理論に価値はない、ということだろうか。
それにしても、厚底ブーツにミニスカートを履いた女性達は、ロールプレイングゲームの主人公達のようだ。色々なアイテムを手に入れ、冒険を続けている主人公達のようである。ほんの少しだけ、うらやましいような気もする。
さて、こういう話題を書くと少し不安がある。もちろん、私もミニスカートを見ると、妙に心が落ち着かないのも確かに事実ではある。しかし、だからといってことさらに興味津々というわけでもない、と思う。多分。ということで、「できるかな?」の女性読者の数が減少しないことを、ただ祈るのみである。
2000-09-02[n年前へ]
■もうすぐ二歳の「できるかな?」
初心に帰ってみましょうか?
「できるかな?」が始まったのは二年近く前の秋のことだった。
でも触れたが、当初(実は今も続いているが)は某社内の某サーバー内でこっそりと始めてみたのだった。それから二年あまりでずいぶんと色々な話が増えた。某社サーバー内でしかアップしていない- プリンタドライバーは仮免
- 続 電子写真プロセスを分数階微分で解いてみよう
- 続々 電子写真プロセスを分数階微分で解いてみよう
そして話が増えてきたせいか、自分自身でも「アレッ、あの話はどこにあったけ?」というように迷ってしまうことが多々ある。迷うどころか、最後まで見つからないこともしばしばあるのだ。そして、それは私でもない他の人であればましてやそうだろう。というわけで、
では簡単にそれまでの話の紹介をしたし、ではhirax.net内の全文検索機能を付けてみた。今回は、これまでの話題をもう一度自分で読み直して、その中から「自分のお気に入り」を調べてみたいと思う。そして、最近少し話題が変になってしまっている反省をして、もう一度初心に帰ってみようと思うのだ。
まずは、1998年の話題からいくと
というあたりが、良い感じだ。京都の風物詩である「鴨川カップル」達が人目を気にしながら寄り添う合う姿を考えてみたものだ。後の「恋の力学」シリーズなどはここらへんから始まっていた、といっても良いだろう。そしてこの頃の[Scraps]系の話題としては、がある。少し前に、この「さなえちゃん」を描いた漫画の作者からメールを頂いたのがとても私には印象深かった。そして、1999年の上半期から選んでみると、まずは
というところだろう。ハードディスクの情報を可視化することで情報圧縮・エントロピーを考えてみた一話である。そして、同じような「可視化シリーズ」の一つである- 感温液晶でNotePCの発熱分布を可視化する- 熱いところで感じてみたい St.Valentine 記念 - (1999.02.14)
- NotePCの発熱分布を比べてみたい- お熱いのがお好き SOME LIKE IT HOT - (1999.02.15)
そして、1999年の下半期はもう自分で言うのも何だが傑作揃いである。大体、書いているペースが自分でも驚くくらいのハイペースだ。月当たりの話の数を数えてみると、
- 7月 9話
- 8月 9話
- 9月 8話
- 10月 8話
- 11月 11話
- 12月 9話
この頃の「お薦めの話」はいっぱいある。例えば、
に始まった「文章可視化シリーズ」や、で始まった「ASCIIアートシリーズ」だろう。から始まる「江戸五色不動シリーズ」は江戸にロケまで行ったので、とても思い出深い話の一つである。しかも、妙な偶然のせいでまるで小説の中に迷い込んだような気持ちになったものだ。そして、WEBページを作る上では
などもどうしても外せない。そして、この後結構続くことになるという「恋の力学」シリーズもこの時期に始まっている。そして、この頃の一番人気が何と言ってもだろう。この「ミニスカート」系の話の流れは以降も続くことになるのが自分では意外でもあり、残念でもある。それはさておき、ナンセンス系ではなんてのも面白い話だと思う。そして、1999年の終わりはやはりこれが「お気に入り」の話である。また、[Scraps]系の話がこの時期にはやたらいっぱいあるのが面白いところだ。その内からいくつかピックアップするとこんな感じだろうか?- [Scraps]絵馬 - どこにもいないよ- (1999.07.09)
- 新宿駅は電気羊の夢を見るか- 意識とは何か - (1999.07.10)
- [Scraps]合掌 - キレイはキタナイ、キタナイはキレイ- (1999.08.01)
- [Scraps]いつかきっと -掌の中の答え - (99.11.03)
- 「文学論」と光学系 - 漱石の面白さ-(2000.02.27)
- 恋の力学 恋の相関分析編- 「明暗」の登場人物達の行方 - (2000.04.01)
- 恋の力学 恋のグラフ配置編- 「明暗」の収束を見てみよう - (2000.04.02)
- 恋する心を見てみたい - 恋のきっかけはどの出来事?- (2000.05.14)
- 恋の形を見た人は - 恋の相対性理論- (2000.05.17)
さて、今回は2000年上半期までの話の中から「私の好きな話」を振り返ってみた。とはいえ、私の好きな話=他の人の好きな話ではないようだし、他の話も適当に眺めて頂いたら良いかなぁ(私が)、と思うのだった。
2001-06-21[n年前へ]
■二十一世紀の「ミニスカートの幾何学」
可愛いAIBOはちょっぴりエッチ
「面白い記事がありましたが、読みましたか?ふふっ(笑)。」というメールが先日私に届いた。さてさて、一体どんな記事だろう?うむむ…?と見に行ってみると、それはZDNNのこんな記事だった。
- 「しつけ」られたAIBO——無線遠隔操作ソフトに,盗撮防止機能
- ( http://www.zdnet.co.jp/news/0106/08/aibo.html?0b06012410 )
しかし、しかし、である。これだけでは、先のメールの書き主が私にわざわざこのニュースを知らせてくれる理由がわけ判らないではないか。私はお茶ノ水博士のようなロボット博士でもなければ、TVチャンピオン常連のおもちゃオタクでもないのである。ましてや、先のメールの「ふふっ(笑)」は奇奇怪怪としか言いようが無い。もしかしたら、これは新手のAIBOの売り込みだろうか?あのSONYもついにSPAMを出すようになったか、あのSONYがなぁ、と思いつつ記事を読み進んでいくと、記事の終わり近くになってやっと疑問は氷解したのである。その部分を少し引用してみると、
今回,遠隔撮影を可能にするAIBO Navigator開発にあたって,ソニー社内でも盗撮問題が再浮上。AIBOを担当するエンターテインメントロボットカンパニー内に「倫理委員会」を設置するなど,盗撮問題に対して真面目に取り組んだという。ということだそうだ。なるほど、これはまさにである。理系学生の憧れナンバー1といえばソニーであるが、そのソニーの「真心」とも言うべきソニーの「倫理委員会」と私は同じような「研究」をしていたわけである。「女性のためのミニスカート理論の構築を目指していた」ミニスカートの幾何学はまさに「真心・倫理」を具現化した研究と言っても良いくらいであるが、やはり判る人には判るのである。先のメールの主は私に「あなたのレポートはまさに日本の倫理のために役立っているのですよ」と教えて下さっているに違いないのである。もっとも、残念なことに私はソニーの倫理委員会と違って「短いといわれているミニスカートの丈の長さを実際に定規で測って調べたり」する機会には恵まれなかったのである。
「AIBOのアタマが,ある角度以上に上を向くと,見てはいけないものが見えてしまう」(ソニー)ということで、倫理委員会では、まず盗撮される側のデータを収集。女性の平均身長の調査から始まり、短いといわれているミニスカートの丈の長さを実際に定規で測って調べ、AIBOの頭部カメラがどの角度までなら大丈夫かをさまざまな角度から調査。その結果、可動角度を最大20度とし、首の位置が20度以上動くようなモーションをしなくてはいけないときは、動画が止まる機構までも装備した
が、そんなことはさておき、「角度で20度までなら、見てはいけないものが見えない」というのは本当だろうか?それは、ミニスカートの幾何学で調べるとどういうことになるのだろうか?というわけで、このナゾについて少し考えてみたい、と思うのである。
というわけで、まずは「ミニスカートの幾何学」の復習をしよう。ミニスカートの内側の下着が見えるか、見えないかを考えるには次のような図を考えると判りやすい。ここでは女性の真下の地点を原点にとり、水平方向にX軸をとり、鉛直上向きにY軸をとっている。
スカートの内側の「見てはいけないもの」が見えてしまうのは、上の図で緑の線よりも下側に入って、その緑の線より上を見上げた場合である。そして、ここでその緑の線は
- 女性の下着の一番下の部分の位置
- ミニスカートの一番端の下の位置
それでは、その「限界角度」を調べるために、とっても簡単「ミニスカートの幾何学」を活用しよう。まずは、例えば女性のヒップ周りが88cmとしてみた場合に、スカート中央から端までの長さ(rcm)は、女性のヒップを円と近似すると、
2πr = 88cmであるから、スカート中央から端までの長さ(r cm)は
r = 14cmとなる。すると、図を見ればわかるように、緑の線 -> 「下着防衛ライン」はスカートの丈を未知数として、
y = - ((スカートの丈 - 25)/14) x + 股下長さという式で表すことができるわけだ。ここで、「AIBOがそれ以上上を向くと見てはいけないものが見えてしまう」という緑の線の角度は
ArcTan[ (スカートの丈 - 25)/14 ] / (2 π)*360で表されるから、それを計算してみて、「スカートの丈」に対する「見てはいけないものが見えてしまう」限界角度を計算してみると、その結果は次のグラフのようになる。
このグラフを見れば判るように、女性のスカートが長くなれば長くなるほど、「見てはいけないものが見えてしまう」限界角度は大きくなる。当り前である。長いスカートの中を覗こうとしたら、AIBOはそのスカートの中へ入り込んで、かなりの上を見上げなければならない。もちろん、スカートの丈が短くなればなるほど、スカートの中身は覗きやすくなる。そうすると、AIBOがそれほど上を見上げなくても、「見えてはいけないもの」が見えるようになってしまうのである。
さて、前回の「ミニスカートの幾何学」では女性達が履くスカートは短くても32cmまでであって、その長さであれば角度が30°ほどにもなる急な階段でも女性のスカートの中の「見えてはいけないもの」は見えることが無い、ということを明らかにした。というわけで、それを知ってか知らずか女性達の履くスカートは短くても32cmまでなのである。だとすれば、その32cmに対応する限界角度は「見てはいけないものが見えるための必要角度」ということになるわけである。
すると、このグラフを見れば一目瞭然、スカートの下限「見てはいけないものが見えてしまう」限界角度は20数度よりも大きいことが判るのだ。ということは、先の記事の通りに、AIBOの首の上限角度を20度にしておけば、もうどうやってもAIBOはスカートの中身を覗くことができなくて、AIBOが盗撮者の手先となってしまう危険は防ぐことができるのである。それより上を眺めれば、見たことのない映像が見ることができるハズなのではあるが、ロボット三原則に基づいて(大ウソ)、AIBOの首はそれより上には上がらないように設計されているわけである。
というわけで、こんな風にソニーの「倫理委員会」がうらやましいばかりの数々の実験を重ねて調べたことも、このミニスカートの幾何学から導き出すことができるのだ。あぁ、なんて社会の役に立つ研究なのだろう。こんな女性のため、社会正義のための幾何学がこの他にあるのだろうか…。しかし、そんな社会正義のための研究だったハズなのに、この「ミニスカートの幾何学」をきっかけにしてhirax.netが色モノサイト扱いされ、さらには有害サイト扱いされるようになるとは… 思いもしなかったなぁ… ふっ… (涙)…。
2001-11-22[n年前へ]
■あなたと見たい、流星群
同じ流星が見える距離
「しし座流星群」が美しく盛んに空を彩った翌朝、Fast&FirstのBBSをぼんやりと眺めていると、「アナタとみたい流星群」と題した
「僕たち距離は離れているけれど、同じ星(月)を見ているんだね」という書き込みを見かけた。思わず良い話だなぁ、と見入ってしまった。
なんて会話をする二人がいます。だけど、一体離れている距離が何km位までなら同じ流星を見ることができるのでしょうか?
今年の「しし座流星群」のようなきれいな流星群を、深夜同じ場所に佇んで二人で一緒に同じ流星を眺める人達も多いだろうが、離れた場所から、それでも同じ流星を眺めている二人もいることだろう。「そんな遠く離れた二人が、同じ流星を眺めることができるとしたら、それはどの程度の距離までなのだろう?」という「同じ流れ星を眺めることができる二人の距離」だなんて、とてもロマンティックでとても面白い話だなぁ、とその書き込みを眺めながら思った。そして、これはいつか考えた「地平線問題」と同じだなぁと考えて、だけど何故だか少し切ない話だなぁ、とも感じた。
だから、とても興味を惹かれたのだけれど、その切なさのせいか、ただぼんやりとその話を眺めていた。すると、すぐに「今日の必ずトクする一言」のKOROKAN氏が
これは計算が可能ですね。…流星の輻射点から地球に接線を引きます。そうすると、と簡潔な答えを書きこまれていた。暗算で片付けるところはやはりさすがスゴイなぁ、なんて感心していると、それとほとんど同じ頃、hirax.netの「ぐるぐる検索」にも、元の質問を書き込まれていた方から、
地球の中心、輻射点、接線が地球に接する点の直角三角形になりますね。…(中略)…これに地球の半径をかけると1118kmと出ました。
つまり半径1118kmの範囲が輻射点から見えることになりますから、(二人の距離としてはその二倍の2000kmで)おそらく東京−福岡、東京−札幌の遠距離恋愛なら見えるかも。
あなたと私、離れていても同じ星を見ている。何kmの距離まで離れていても同じ流星を二人は見ることができるのでしょうか? (F&Fの掲示板に書きこんだ内容に同じです。)という検索メッセージが送られてきた。そして、さらに
とても好きな女性が私の住むミネソタから約1000マイルほど離れたオハイオに住んでいまして、彼女に獅子座流星群の話をしながらこの話を思いついたのです。ちょうど1000マイルだったらギリギリって感じかもしれない?遠く離れた場所でも、同じ流星を見ることができるかもしれない?という話の発端を読みながら、私もちょっと落書きをしてみた。
KOROKAN氏が簡潔に書かれていた答えをもう少し言い換えると、「私たちが流星を見ることのできる距離」は「流星の地平線」と同じだ。私たちが流星を見ることができるのであれば、逆に流星からも私たちが見通せることになるのだから、「地表に立つ私たちが流星を見通せる距離」=「流星が地表に立つ私たちを見通せる限界」、ということであって、それはすなわち「流星の地平線」そのものということになる。もちろん、本当はもっと色々なことを考えなければならないわけだけれど、とりあえずはこんな大雑把な計算でも十分だろう。
●流星の発光点 |
以前、地平線までの距離を計算した
でやったものと同じく(KOROKAN氏が書かれていたことと同じ)、灰色の直角三角形に着目してやると、流星の発光点の高度がわかれば、あとは地球の半径=約6400kmを用いれば、流星の地平線までの距離は簡単に計算することができる。 流星の発光点の高度は理科年表をめくると、次のような表が載っていて、大体70km〜130kmの間であることが判る。その高度差を100kmほどの長さにわたって、光りながら駆け抜けて行くのである。
そして、「流星の発光点の高さY」を変えた場合の、流星から見渡せる距離(=流星の地平線)を計算してみたものが次のグラフになる。この「流星から見渡せる距離」がつまりは「流星を見ることができる最も長い距離」になる。
先の「流星の発光点の平均高度」として約70km〜130kmという値を使うと、先にKOROKAN氏が書き込まれていたように1000km前後という数字になるわけである。で、流星の発光点(輻射点近く)を挟んで遠く離れたところに住む二人であれば、その二人の距離が1000kmの二倍で2000kmの距離までは同じ流星が見える、ということになる。
だけど、これは理想的な話で、現実の話ではない。
実際にはそんなわけにはいかない。私達が住むほとんどの場所は、海原の真中や高い山の頂きじゃない。私達が流星を眺める場所はビルや鉄塔に囲まれたマンションのベランダだったり、あるいは木々や小高い山が周りを囲む小さな公園だったりする。少なくとも、地平線の果てまで見通せるような場所で眺める人なんかほとんどいないだろう。流星を眺めようとするほとんどの人達がいる場所は、上に広がる空しか見えなくて、地平線近くの空なんか見えない場所だとう思う。きっと、せいぜい天頂から60〜70°位の角度までしか空を見通せないに違いない。
だとすると、さっき計算のときに着目した「灰色の直角三角形」は少し変えてやらなければならない。人の視点での地球への接線をひくのではなくて、もう少し天頂側へ角度を振ってやる。すると、先の「灰色の直角三角形」は下の図のように「青色の三角形」に変化することになる。
●流星の発光点 |
そして、先と同じようにこの三角形に注目しながら、「限られた空の下」に住む現実の私達が見ることのできる流星までの距離を計算してみると、下のグラフのようになる。下のグラフで「空を見渡せる角度」が天頂からの角度で90°、すなわち地平線まで完全に見渡せる場合である。つまり、先に計算した「理想的な場合」である。そして、それが1100km程度というのはもちろん先程と同じだ。
このグラフを眺めてみると、天頂からの角度に対しての「見ることができる流星までの距離」は「地平線近く」の場合とそうでない場合とで全然違うことが判るだろう。
「地表面」と「その100km上空の面」というのはほとんど平行だから、天頂からの角度が70°位までは「流星の発光点までの距離」は緩やかに増加していくだけだ。天頂からの角度が70°(というとかなり水平にもう近いが)の時でさえ、「流星の発光点までの距離」はたった200km強である。さきほど見えると思われた1000kmなんて遥か彼方だ。
しかし、天頂からの角度が80°を超え、ほとんど水平間際になってくると、「見ることができる流星までの距離」はぐんぐんと大きくなってゆく。80°で600kmくらい、85°で700kmくらい、そして90°でついに1000kmの彼方の流星まで見えることになる。
ということは、現実の私達、海原の真中や高い山の頂きじゃなくて、ビルや鉄塔に囲まれたマンションのベランダや小さな公園から流星を眺める「限られた空」の下に住む私達は、せいぜい200kmくらいまで離れた場所で光る流星しか見えないことになってしまう。1000kmの彼方の流星なんかとてもじゃないが見えなくて、たった200kmが限界になってしまうのである。
すると、遠く離れた二人が同じ流星を眺めようとするとき、その二人の距離の限界は高々200kmx 2=400km程度ということになってしまう。東京-大阪でも難しいかもしれない。空が本当に天頂近くに限られて、「空が無い」東京のような場所であれば、きっとその距離はもっとずっとずっと短くなるはずだ。新幹線に乗って会いに行くような二人では、同じ流星を眺めることはできないのかもしれない。
だけど、とも思う。先のKOROKAN氏の書き込みは
それに何より、「見ているモノが同じモノ」と信じる力が重要で、それが同じモノか、別のモノかを証明するすべも、否定するすべもありませんなあ。信じる者は救われるというし。という風に締めくくられていた。私も本当にその通りだと思う。さっきの「せいぜい400kmが限界」なんて計算結果は「同じ流星を眺めようとする二人」には全然関係ないのだろう、とも思う。
もしも、遠く離れて見渡せる空が全然重ならないような距離であっても、例えそれが昼と夜ほどの違いになる距離であっても、同じ景色を眺めている二人もいるだろう。また、逆にとても近くにいても同じ景色も流星も眺めることのできない二人もいるのだろうと思う。そんな違いを決めるのは、幾何学的な話じゃなくて、きっと別の何かだ。
そしてまた、流星を眺める私たちの視点から、流星の視点に移動するといろいろなものが見えてくるとも私は思う。「限られた空」の下の私たちの視点がもう少し高く、高度100kmほどまで上がれば、周りではついに流星が輝やき燃える高さになる。ここまでくれば、見渡すことのできる地平線の果てまでは1000kmほどになる。その半径1000kmの円の地表が、その流星の視点から見える世界だ。
そして、その流星の地平線の中にいる人達は、その流星を同時に眺めることができる人達であるが、一体その半径1000km程の領域の中にはどれだけの人達が住んでいることだろう?数千人?それとも、数千万?とてもたくさんの人達がいるに違いない。それは例え、半径200kmの円であってもやはり同じことだろう。その地平線の中にはとてもたくさんの人が住んでいる。
そんな地平線の中の(あるいは外の)数え切れない沢山の人達の中に、同じ流星を眺めようとする二人がいる(それともいない)なんて、やっぱりとてもロマンティックで、やっぱりちょっと切ない話だなぁ、と思う。