hirax.net::Keywords::「rgb」のブログ



1999-12-12[n年前へ]

色覚モドキソフトを作る(色弱と色空間その4) 

五十歩百歩

  まず、先に書いておこう。今回は、

で作成したTrueColorと似たようなプログラムを作成してみたい。何しろ関係ない話が以降、長々と続くからである。

  昔から、科学者は「色」というキーワードに強く惹かれている、と思う。そんなことを私が思うまでもなく、量子色力学(quatumchromodynamics)、色つき空間群(Color-symmetry)等のキーワードにその事実は現れている。これらの言葉は普通に使われる「色」という言葉とは違う性質を表すものである。しかし、科学者が「色」というものを基本的なものであると感じているために、どんなものが対象でも、「性質」の代表的なものとして、「色」という言葉が連想されるのだろう。

  私は学生時代の量子力学の授業のおかげで、「色」という言葉を聞くと今でも眠くなってしまうのである。何しろ、私の通う理学部の教室の横は農学部の畑だったのだ。教授の声と共に「モゥーーー」という牛の鳴き声が聞こえてくるのだ。教授の声と牛の鳴き声が絶妙のハーモニーとなるのである。ただでさえ眠くなるのに、そのハーモニーはクロロホルムもビックリの睡眠作用を発揮するのだ。私はそのハーモニーのおかげで何回も記憶を飛ばされた。
また、その牛達のおかげで、授業の中で「匂い」と聞いたりすると、牛の糞の「匂い」しか連想できないのである。困ったものである。あの農学部の畑がなければ、もしかしたら私は量子力学を好きになっていたかもしれない。そして、量子力学を極めていたかもしれないのだ...簡単に言えば私は量子力学の授業では落ちこぼれてしまったわけだ。

  ところで、昔の科学者達を考えると、「色」に関わらなかった人を探すほうが逆に難しいように思う。ニュートン、マクスウェル、ヤング、ヘルムホルツなどが代表的である。当たり前である。物理・化学に関わらず、「光」には関わらざるを得ない。当たり前である。さまざまな計測を行ったり、エネルギーを考えたりする上で光は最も重要なモノである。
 そして、「色」というものは「光」の大きな性質の一つである。しかも、それは「科学者自身にとっても」目に見える性質である。目に見えるものを無視する科学者は少ないと思われるので、科学者が「色」に関わらないわけにはいかないのだ。

  割に最近の科学者でも、意外な分野の人が「色そのもの」の研究をしていることがある。例えば、シュレディンガーなども色空間の提唱をしていたらしい。確かに、量子力学から色空間へはつながりを感じないこともないのではあるが、少し意外でもある。そのシュレディンガーが提唱した色空間がどのようなものであるのか、私は残念ながら知らないのだが、波動を深く研究していたシュレディンガーが提唱する色空間というのは非常に興味のあるところである。また、化学。物理学者であるダルトンは自らも色弱であるため、特にその辺りのことを研究し、報告している。

  さて、そのダルトンをinfoseekで検索してみると、

というページを見かけた。ここに、色覚バランスチェック用の図があった。昔、身体検査でやったことがあるような図である。こういった、図が人によってどのように見えるかは非常に興味があるし、気にかかるところでもある。
 もちろん、WEBページは会社の心(色弱と色空間 その2) - WEBページのカラーを考える 3 - (1999.08.10)で作成したTrueColorも同じような目的のために作成したものであるが、あれはあまりにも大雑把なモノだったので、作り直してみたいのである。なお、今回は画像のRGBとL、M、S錐体の反応の間の変換は
画像のRGBとL、M、S錐体の反応の間の変換マトリクス
左=RGB2LMS、右=LMS2RGB
という変換マトリクスを用いている。

  そこで、こういったWEB上の画像を読み込んで、

でやったL,M,Sの各錐体の感度が低いときの色覚シミュレーションを行うソフトを作成してみた。ソフトはこれである。前回と同じく、Susieプラグインを用いて画像を読み込んでいるので、「Susieの部屋」などから、Susie本体・あるいはプラグインを入手する必要がある。
 また、手間を惜しんだためProxy対応にはしていない。さて、動作画面サンプルを以下に示す。初期状態ではから画像を読み込むようになっている。もちろん、他のURLからも画像を読み込むことが可能である。画面左の三本のスライダーで各錐体の感度を調整できる。
truecolor2.exeを実行した画面

  この画面例では各錐体の感度は全て100%になっている。

  それでは、以下に適当に錐体の感度パラメータを変化させた場合のサンプルを示してみる。

truecolor2.exeで錐体の感度パラメータを変化させた場合のサンプル

  こうしてみると、これまで見てきたものとは違う数字が浮かび上がることがわかる。89,52などである。こういう仕組みを用いたのが、石原式などの色覚検査のやり方である。つまりは、異なる色を識別できないこと、すなわち、混同色を用いているのである。混同色を用いて文字を描くことにより、色弱であるかどうかを判断しようとするものだ。

  さて、こういった書き方をすると、色を混同してしまうのが色弱の人だけと勘違いされてしまいそうであるが、そんなことはない。全ての人が「色を混同してしまう」のである。どんな人でも、異なる波長の光であっても、例えばRGBなどの(多くても)三色を混合すれば同じ色に見えてしまう。つまりは、混同色だらけなのである。健常者と呼ばれるヒトも色弱と呼ばれるヒトもたかだか数種類の錐体を持つにすぎない。
 色々な光の波長分布を認識できる生物がいたとすると、彼らがからすればヒトは全て色弱ということになるのだろう。つまりは、五十歩百歩といったところなのかな、と思うのである。

2000-03-19[n年前へ]

一家に一台、分光器 

ハサミとテープで「できるかな?」



 いきなりであるが、分光器を作りたい。光を波長別に分ける機器である「分光器」である。とある実験をするために、分光器が必要なのである。その「とある実験」の影には、大きな野望があるのだが、まだ明らかにする訳にはいかない。とりあえず、色の話題を考えるときに分光器があると便利だから、という理由にしておきたい。

 どうやって分光器を作るか考えてみる。普通であれば、グレーティング(回折格子)やプリズムといったものを使うことになるだろう。家の中を探してみれば、プリズムなどもあるはずなのだが、WEBで情報を探してみると面白い情報があった。

である。CDは1.0umの幅をおいて0.5um幅のピットが配置されている。1mm中のピット数に直すと、600本強である。そして、その構造は反射型のグレーティングそのものである。いらないCDならば家には腐るほどあるし、「CDを使って、マイ(オレの)分光器を作ろうか?」と考えていたのだが、いきなり手元に透過型のグレーティング(回折格子)があったことに気づいた。そこで、このグレーティングを使って分光器を作ってみた。

 次に示すのが、HIRAX一型分光器である。ハンディ・超軽量の優れものだ。テープとハサミと去年のカレンダーを駆使し、フリーハンドで作成した、製作時間20分の大作である。どうも私の仕事はテープとハサミを駆使することが多い。それは、ハードでもソフトでも、どちらでも同じことである。出来の悪いノッポさんである。
 

HIRAX一型分光器の外観図

 左下がスリット部になっている。中央上の折れ曲がっている部分にグレーティングが配置している。次の写真を見るとグレーティングがあるのが判ると思う。HIRAX一型分光器の内部は散乱光を防止するために、黒く塗ってある。しかし、下の写真を見れば判るように、グレーティングの周りの片側は塗り忘れてしまった。まるで、「耳なし保一」である。
 

HIRAX一型分光器の中央にあるグレーティング

 こちらの開口部から目で覗くなり、デジカメで撮影するなりするのだ。そうすれば、スペクトルが確認できる、というわけである。

 例を示してみたい。グレーティングが曲がっているせいで、スペクトルが歪んでいるし、スリットが結構太いし、サイズのせいもあってスペクトルの分解能はそれほど高くない。しかし、結構きれいな映像を得ることができる。まずは、太陽光のスペクトルを見てみる。
 

太陽光のスペクトル

 これはデジカメで撮影したものである。スリットが太いので確認しづらいのだが、太陽光のフラウンホーファー線(FraunhoferLine)の一つHβ吸収線が486nm(ここでは水色の中央部)辺りに見えるような気がしないだろうか? いずれ、スリット幅を小さくして、もう少し精度の高い実験をしてみる予定である。

 さて、次の例は「自宅の蛍光灯のスペクトル」である。
 

自宅の蛍光灯のスペクトル
 水銀の
  • 黄色、橙色  579、577nm
  • 黄緑色     546 nm
  • 水色      436 nm
  • 紫色      408、405 nm
のスペクトル(多分?)が確認できる。また、ノートPCの液晶の白い部分を分光器にかけてみると、次のようになる。光量が弱くいが、RGBの輝線が確認できる。
 
液晶(RGB)のスペクトル
の時の液晶の拡大画面と見比べてみると、面白い。

 目で覗いたり、デジカメで撮影したりするのも面倒なので、可視・赤外領域に感度を持つCCDボードを秋月で買ってきた。次回、このCCDボードを取り付けて見る予定だ。そして、定量化をしてみたいのである。そして、ある野望のためにせっせと実験を続けていく予定である。
 

2000-05-31[n年前へ]

あなたのモニタの守備範囲 

ICMファイルを眺めてみよう


 ほとんどの場合、私はWEBページはNotePCの画面を見ながら作成する。かといって、WEBを眺めるのもNotePC上が多いかというと、そういうわけではない。眺めることに関しては、CRTディスプレイを眺めるほうが時間からいうと長い、と思う。

 そして、NotePCの液晶画面で作成した画像などを、hirax.netのサーバー内にアップロードして、CRTディスプレイ上で眺めると「見た目が全然違ってあせる」ことがしばしばある。私の使っている「NotePCの液晶ディスプレイ」と「CRTディスプレイ」でカラーマッチングが上手くいっていないのである。

 上手くいっていないのも当然で、何しろ色の調整なんか(ソフト上では)全然していないのである。もちろん、CRTディスプレイの方は色味やコントラストや何かは結構調整した。しかし、NotePCの液晶の方なんか全然調整はしていない。まして、メインで使っているWindows2000上では調整なんか全然していないのである。

 かつて、メインマシンとしてMacintoshを使っていたときには、使うモニタのプロファイルなどを個別調整したりして、結構気を使っていた。しかし、Windowsをメインで使うようになってからはとんと気にしなくなっていた。モニタの色合わせについてはあまり考えていなかったのである。いけない、いけない。これではいけない。「考えないことは罪である」が私のモットーである(今決めた)。

 そこで、今回Windows上のディスプレイの色合わせについて調べてみることにした。まずは、画面のプロパティを見てみる。そこには、次の画面のようにどのような色特性のモニタを使っているか設定する画面がある。
 

モニタのカラープロファイルの設定画面

 この中で、自分の使っているディスプレイに合わせたカラープロファイルを選択してやるといいのだろうか。とりあえず、windowsディレクトリの中には色々な種類のデバイスのカラープロファイルがずらずらとある。例えば、こんな感じである。
 

カラープロファイル・ファイルたち

 拡張子で言うと*.ICMというやつである。ICMはImage Color Matchingの略で、windows内部でカラーマッチングを行う機構のことである。さて、こういうふうに色々ファイルがあるのは判るのだが、これだけでは一体何がなんだか判らない。よく判らないファイルは、中身を除いてみたくなるのが自然だろう。例え、それが透け透け水着であっても、ミニスカートであっても、隠されたものは覗き込みたくなるのが人情である。

 そこで、少し情報を調べてみると、
http://labs.nec.co.jp/hide/ICPLIB-listj.html
にicplibという、ICMファイルの読み書きにとっても便利なライブラリーがあった。NEC様が作成されたライブラリーでとても簡単にICMファイルをいじることのできる「とてもありがたい」ソフトウェアである。

 適当にこの中を眺めてみると、サンプル中にICMファイルの中身を読み出して、表示するアプリケーションがある。早速、コンパイルしてやると、こんなソフトである。
 

ICMファイルの中身を読み出して、表示するサンプルアプリケーション

 上の画面のように、試しにICMファイルを読み込んでみる。すると、その中身は次のようなものが書き込まれているのがわかる。これは、sRGBColor Space Profile.icmというファイルの中身の場合である。
 

sRGB Color Space Profile.icm

 この中にはずらずらと色々なデータが書き込まれている。一例を挙げると、そのディスプレイの赤の色がXYZ色度座標でどの値か、というようなことが書いてあるのだ。例えば、次の図がそれを示したものである。(X,Y,Z)= (0.436,0.225,0.1392)となっているのが見えると思う。
 

sRGB Color Space Profile.icmの場合のRedのXYZ座標

 ここでは赤の座標値だけを眺めたが、Red,Green,Blueの各座標の値を眺めてみれば、そのディスプレイがどんな色空間を表示可能なのかが目安としてわかるだろう。Red,Green,Blueの組み合わせで色を表示するわけであるから、当然その三つの座標で囲まれる三角錐の範囲の領域が表示可能なわけである(大雑把に言えば)。ということは、このICMファイル、カラープロファイルを見れば、それぞれのディスプレイの大雑把な性能が判るわけだ。とても、大雑把にだけど。
 それでは、試しに、いくつかのディスプレイを用いて、表示可能な色空間の範囲をICMファイルを頼りに調べて、試しに比較をしてみたいと思う。

 さて、どういうディスプレイで比較をするかであるが、ディスプレイと言えば「ナナオ」である。いや、少なくとも一時はディスプレイと言えば「ナナオ」であった。売れすぎた今となってはどうなのかは知らないが、私にとっては川崎和夫がデザインを担当したことがあるということだけで、十分なくらい気になるブランドである(しかし、実は私はナナオを使ったことがない。私は何故かダイアモンドトロン一筋なのだ)。「欲しいけど高い。」 「高いけど欲しい」なのである(高くて買わないけど)。

 そういうわけで、気になる「ナナオ」のディスプレイの色特性を見てみることにした。まずは、

から「ディスプレイ情報ファイル」をダウンロードしてみた。そして、その中の
  • CRTディスプレイ
  • 液晶ディスプレイ
  • プラズマディスプレイ
からそれぞれ代表選手を選んでみた。それが次のものである。
  • EIZO CRTディスプレイ EIZO FlexScan E57T ( E57T__65.ICM )
  • EIZO 液晶ディスプレイ EIZO FlexScan E151L ( E151L_M1.ICM )
  • EIZO プラズマディスプレイ EIZO FlexScan P4260 ( P4260_M1.ICM )
 
 以前、で計算し、可視化した「ハイビジョンテレビのRGB色空間」をCIE xy色度図上で示したものに、これらのディスプレイの色空間を重ねてみることにする。次の図上で、
  • すごく太い線 液晶ディスプレイ EIZO FlexScan E151L
  • 中間の太さの線 CRTディスプレイ EIZO FlexScan E57T
  • 細い線 EIZO プラズマディスプレイ EIZO FlexScan P4260 ( E151L_M1.ICM )
というように示してみた。それぞれの三角形の中の領域の色が各ディスプレイのカラープロファイルに記述してある出力可能領域である。
 
各ディスプレイの出力可能な色領域

 ハイビジョンテレビといってもCRTなわけである。だから、以前計算したハイビジョンテレビの色空間と「CRTディスプレイ EIZOFlexScan E57T」のそれがかなり近いのは当然である。
 それに対して、「液晶ディスプレイ EIZO FlexScan E151L」の色空間はずいぶんと狭い。青方向はかなり狭いし、赤方向に対しても若干狭い。深い青色の海の中で、赤い熱帯魚が群れるような景色を観るのにはもしかしたら向かないのかもしれない。
 「プラズマディスプレイ EIZO FlexScan P4260」の場合も、やはり若干青・赤方向が弱い。しかし、何やら緑方向にやたら広い発色可能な領域がある。緑の大草原の画像をこのディスプレイを使って眺めてみたくなる。きっと、結構キレイなのだろう。

 さて、今回、少し調べてみたicmファイル(カラープロファイルファイル)には、それぞれのディスプレイの出せる「色空間」が書かれている。言わば、それぞれのディスプレイの「守備範囲」が書かれているわけだ。それぞれのディスプレイにそれぞれの「守備範囲」がある。それぞれのディスプレイやプリンタ達の「ここの範囲ならまかせとけ」という範囲である。

 その守備範囲をちゃんと知ってさえいれば、「少ない戦力でも勝つこと」ができるかもしれない。また逆に、その守備範囲を間違えるととんでもないことになる。「勝てる試合も負けてしまう」し、「ケガでリタイアする選手も出」てきてしまう。江本猛であれば、「ベンチがアホやから野球をやってられん」という名言を言うところだろう。

 というわけで、ディスプレイ達にそう言われないようにするためにも、カラープロファイルファイルでこれからも遊んでみたい、と思う。
 また、「カラープロファイルで眺める各社のプリンターの性能比較」というような企画でもしてみようかな、とふと思うのであった。
 

2000-09-16[n年前へ]

モザイク消し器の真実 

買うも買わないもアナタの自由

オリンピア ビデオ編集器 DUAL-2005DX  モザイク編集器 DVD対応  前回、

  • モザイクの向こう - 隠しているから良いのです- (2000.07.18)
  • で「モザイク消し器」について考えてみた。といっても、考えてみただけで使ってみたわけではない。当たり前である。そんな「モザイク消し器」が私の家にあるわけはないからだ。歩く「悟り」、歩く「生き仏」と呼ばれる私の家にそんなものがあって良いはずがない。その証拠に私はそんな風に呼ばれたことがない(土屋賢治風ロジック)。

     さて、そんな風に言いたい所なのだが、実はそれがあるのだ。何と、「モザイク消し器」が私の家には鎮座しているのである。といって、それは私のものではなくて、某編集者の方がとあることのために送ってくれたものなのである。
     

    くりくり小僧

     残念ながら、このくりくり小僧はあまりにも使い物にならなかったので、部屋の片隅にそのまま放置されていた。いや、こう書くと誤解されそうである。別に変なことに使ったわけではなくて、技術的に使い物にならなかったのである。一応、そこの所はハッキリしておきたい。大体、コレを一体どうやって変なことに使うのだ(以下略)。

     今回、このくりくり小僧を送り返すことになったので、せっかくだからこのモザイク消し器がどんな風に技術的に使い物にならなかったかをこのタイミングで書いてみることにしたいと思う。
     

     まずは、このくりくり小僧の操作方法を説明しておこう。ビデオ信号は通常のNTSC信号で入出力するようになっている。エロビデオをこの「くりくり小僧」に入力し、処理した画像をテレビへ送るのである。あるいは、処理した画像を新たにビデオにダビングするのかもしれない。

     この「くりくり小僧」は、対応するモザイク処理(広義の)の種類は

    • モザイク(狭義の)
    • 反転
    の2モードである。先ほどの写真を見れば、モードというスイッチがあることが判るだろう。前回も書いたが、念のためにモザイク処理(広義の)のそれぞれの種類がどんなものだかをサンプル写真で示しておく。
     
    モザイク処理(広義の)の種類
    オリジナル
    モザイク(狭義の)
    反転

     「くりくり小僧」の写真を見ると判ると思うが、画像復元処理をかける領域の

    • 大きさ
    • 位置
    を自由に選ぶことができる。画面の一部にのみかけられているモザイクに復元処理がかけられるわけだ。といっても、動き回るモザイクをこのジョイスティック(日本名:お楽しみ棒)で追いかけなければならないのである。そこには、ゲームセンター嵐(古すぎ)もビックリの神業が必要とされるのである。

     写真中にあるその他のボリューム

    • 輝度
    • 明るさ
    • エンハンサー
    というのは全て画像の画質調整を行うパラメータだ。

     それでは、まずは適当にモザイク画像を作ってみる。そして、その画像を「くりくり小僧」を使ってキレイに戻せるかを調べてみることにしよう。そこで、最初に示すのが

    • 女性のオリジナル画像
    • オリジナル画像の一部に反転処理をかけたもの(後述するが、実は失敗している)
    である。実はこの反転画像は一つ失敗を犯しているのであるが、その失敗については後述したいと思う。ともあれ、この右の反転画像の中央部はオリジナル画像のそれに対して反転していることが判るだろう。
     
    左がオリジナル画像、右が反転画像(実は失敗)

     上の右の反転画像の中央部に対して、「くりくり小僧」で復元処理をかけてみたのが下の画像である。さて、画像は元通りになっているだろうか?
     

    反転画像の中央部に「くりくり小僧」で復元処理をかけてみた画像

     この画像を見る階調は確かに反転しているのであるが、色が明らかにおかしい。オリジナル画像では赤かったハズの唇が青いのである。それどころか、顔全体が青いのである。真っ青だ。明るさは正しそうなのであるが、色合いは絶対に何かが狂っている。

     そこで、「基準画像」に対して、「くりくり小僧」で反転復元処理をかけてみることで、どのような処理をかけているかを調べてみた。それが下の画像である。左が「基準画像」で、右が「基準画像」に「くりくり小僧」で反転復元処理をかけてみた画像である。なお、画像の右端および下端部分に関しては「くりくり小僧」で反転復元処理をかけていない。
     

    左が「基準画像」、右が「基準画像」に「くりくり小僧」で反転復元処理をかけてみた画像

     さて、画像の向かって左にあるグレイスケールの階調部分を見れば一目瞭然だと思うが、この「くりくり小僧」で反転復元処理をかけた画像は確かに明るさが反転している。それはその他の白黒画像の部分を見ても明らかである。

     そして、カラーチャート部分を見てみると、色合いは実は全く変化していないことが判る。右上から左下まで「紫・青...橙・赤」と繋がっているカラーチャートは左と右でそれほど違っていない。ほとんど同じである。

     それは考えてみれば、当たり前なのである。「くりくり小僧」の入出力はNTSC(NationalTelevision System Commitee)方式を使っている。このNTSC信号はカラー画像を

    1. 輝度情報
    2. 赤 - 輝度情報
    3. 青 - 輝度情報
    という三つに分けて伝送しているのである。これは、白黒テレビとの上位互換性を持たせるためである。そして、「くりくり小僧」の反転処理はこの輝度情報のみを反転させるのである。残りの色に関する情報
    1. 赤 - 輝度情報
    2. 青 - 輝度情報
    に関してはそのままなのである。だから、先ほどの「くりくり小僧」で反転復元処理をかけてみた画像が白黒部分は階調が反転していたにも関わらず、色合いはそのままだったわけだ。

     ところが、先ほど私が女性のオリジナル画像に対して反転処理をかけてみたものは、RGB画像のRGBそれぞれのチャンネルに対して反転処理をかけていたのである。これでは、明るさが反転するだけでなくて、色合いまで反転してしまう。私は、何と「くりくり小僧」の入出力はNTSC方式を使っていて、RGB画像でないことを失念していたのである。その結果、女性の顔色が反転したまま真っ青になってしまったわけだ。

     そこで、その「輝度チャンネルのみの反転」ということを考慮してテストしてみたものが次の画像である。今度は反転画像の中央部に「くりくり小僧」で復元処理をかけた部分の色合いが正しい色合いであることがわかるだろう。
     

    反転画像の中央部に「くりくり小僧」で復元処理をかけてみた画像 その2

     なるほど、「反転画像」に関しては「くりくり小僧」は確かにちゃんと画像を復元できることが判った。しかし、しかしである。反転モザイク処理をかけたビデオなんてそうそうあるわけがない。いや、そんなに自信を持っていうと何やら変な疑いをかけられそうであるが、多分そうだろう。ほとんどは、次に示すモザイク(狭義の)処理だと思う。それをキレイに復元できなければ、「モザイク消し器」と名乗る資格はない。そうは思わないだろうか?百歩譲っても、「反転消し器」と言うべきではないだろうか?そこで、狭義のモザイク画像に対してこの「くりくり小僧」が威力を発揮することができるかどうかを、次に調べてみた。

     まずは、作ったモザイク画像を先に示そう。下の左が先程と同じオリジナル画像で、右がモザイク(狭義の)画像である。よく(?)見かける画像だと思う
     

    左がオリジナル画像、右がモザイク(狭義の)画像

     それでは、「くりくり画像」はこのモザイク向こうをキレイに映し出すことができるだろうか?この機械は悩めるエロ子羊達を救うことができるのだろうか?それを確かめてみたのが次の画像である。先のモザイク画像の中央部に「くりくり小僧」で復元処理をかけてみたものである。
     

    モザイク画像の中央部に「くりくり小僧」で復元処理をかけてみた画像

     「何だこりゃぁあぁ」、と私は思わず叫びそうになった。いや、別にこの機械のためにお金を払ったわけじゃないから良いのだけれど、一体なんなのだこれは。このモザイク消し機能はハッキリ言って大嘘である。桃太郎侍だったら「おまえなんか「モザイク消し器」じゃねぇぇ」と切り捨てるところだ。

     これなら、前回

  • モザイクの向こう - 隠しているから良いのです- (2000.07.18)
  • で試したような単なるボカシ処理の方がずっと上である。ちなみに、この下の画像が単なるボカシ処理で「モザイク」を消してみたものである。上の「くりくり小僧」の復元画像よりもずっとマシであることが判るだろう。
     
    単なるボカシ処理で「モザイク」を消してみたもの

     ちなみに、先程の「反転処理」の場合と同じように、「基準チャート」に対して「くりくり小僧」でモザイク復元処理をかけてみたものを示してみよう。下に示すその画像を見れば、「くりくり小僧」のモザイク復元処理が

    1. 輝度チャンネルの反転処理
    2. 横方向のエッジ強調処理
    等が組み合わさっている、と想像される。「横方向のエッジ強調処理」というのは、放射状の模様の部分を見れば、水平方向へ延びている線が消えているのに対して、垂直方向に延びている線が強調されていることで判る。
     
    左がオリジナル画像、右が「くりくり小僧」でモザイク復元処理をかけたもの

     しかし、この「モザイク復元処理」をかけてみても、私には全然モザイクの向こうは見えないのである。もう、何が何だか判らないのである。もう、何が何だか判らないが故に、もしかしたら人の持つ無限の想像力をフルに発揮できるのではないか、と思うほどである。私は残念ながらエロの想像力が足りないのかもしれないが、想像力の発達したエロの天上人達であれば話は別だろう。

     さて、今回の話は「モザイク消し器のMTF(仮称)」というタイトルで書き始めたのであるが、「モザイク消し器」の実力がこんなものだったのでお蔵入りしていたのである。まぁ、解析の出来としてはイマイチであるが、もしかしたら「モザイク消し器」を買おうかどうかと迷っている子羊達の参考になるかもしれないので、一応公開してみた次第だ。

     さて、私はこの機械をいじってみて思わず暴れ出しそうになったが、それはもしかしたら私だけかもしれない。人によっては、「何て素晴らしいんだ!!この機械は!!」と感激する可能性だってゼロではない。イマジネーションが豊かなあなたであれば、さぞかし素晴らしい桃源郷がモザイクの向こうに見えるのかもしれない。

     だから、「買うか、買わないか」はアナタの自由だ。だから、このイマジネーション養成ギブスに大枚を払うの悪くないかもしれない。この機械でイマジネーションを鍛えた暁には、モザイクの向こうにアナタには何かが見えるかもしれない。確かに、それも悪くないかもしれないだろう。そこに何が見えるかは、結局あなた次第だと思うのである。
     

    2000-10-25[n年前へ]

    虹の彼方に。 

    色覚モドキソフトを作る その7

     今年は好きなWEBサイトがいくつも店じまいしてしまった。「わきめも」もそんなサイトの一つだ。その今はもうない「わきめも」の中で、
     きれいな虹が見えた。だからビールを飲んだ。だけど、目に見えている虹の色は写真のフィルムには写らない。どんなフィルム・CRT・プリンターの出力色空間もとても狭くて、虹の中に見える色は出せないからだ。ビールも虹も「生」に限る。
    という話があった。もう元のWEBページがあるわけじゃないから、細かいところは違っていたかもしれないけれど、大雑把な内容はこんな感じだった。- ビールも虹も「生」に限る - なんてとてもシブイセリフで良い感じだ。
     

     このセリフの中の「どんなフィルム・CRT・プリンターの出力色空間もとても狭くて、虹の中に見える色は出せないからだ。」というのを図示してみると、下の図のようになる。
     

     

     例えば、虹の中に見えるスペクトル色はこの図で言うと、黄色の矢印で描いた側の、色で塗りつぶした領域の外枠の色だ。波長の長い単色光、つまり最初は赤色から始まって、波長が短くなるに従い「赤→黄色→緑→青→紫」というようにスペクトル色はつながっている。

     この図中に、とあるCRTとプリンターの出力可能な色空間(CCMファイル中に埋め込まれているプロファイル情報を参考にしたもの)を白点線と白実線で示したが、とても狭い領域の色しか出せず、とてもじゃないが虹の中に見えるスペクトル色はこれらの機器では出ないことが判るだろう。

     だから、「生」の虹を見たときの感じは写真でもCRTでもプリンターの出力でも味わえないわけだ。おいしいビールは「生」に限る(私の趣味では)のと同じく、虹も「生」に限るのだ。
     

     だから、虹の色と同じ

    の時に撮影したような太陽光のスペクトルも、こんな風にWEBページの上で眺めても、それはやっぱり分光器を「生」で覗いている感じはとてもじゃないが味わえない。
     
    太陽光のスペクトル

     こんな、「赤→黄色→緑→青→紫」というスペクトル色を眺めていると、中学の頃の美術の授業を思い出した。その授業の中で、こんな色相環が教科書か何かに載っていて、「こんな色のつながりは「赤→黄色→緑→青→紫」というスペクトル色に対応しているんだよ」と美術の先生に言われた。それを聞いていた私はよく判らなくなって、「すると、何で紫と赤のところで繋がってるのでしょうか??」と先生に聞くと、その先生も「う〜ん。」と悩み始め、しまいには「いつか調べて答えが判ったら、私にも教えてくれたまえ。」と言うのである。今考えてみると、それはとても素晴らしい言葉だった(間違っても皮肉でなくて、本当に素晴らしいと思うのだ)。
     

    色相環

    色覚のメカニズム 内川恵二 朝倉書店 口絵より

     だけど、「赤→黄色→緑→青→紫」という単色光のスペクトルが波長としては単に一方向に変化していくだけなのに、グルっと一周する感覚を受けるのはとても不思議である。そこで、色感覚モドキソフトを作ってそこらへんの感覚を眺めてみる、つまり「できるかな?」の常套手段である「その謎を見てみよう」と思うのである。

     この「色感覚モドキソフト」はいつものように極めて大雑把でチャチな作りである。ソフトの流れとしては次に示すように、

    1.光源としては二種類の場合
      • RGBのCRTモニタ
      • 単色スペクトル光
      を考える。そして、RGBのCRTモニタのRGBそれぞれのスペクトルを設定する。次に、RGBのCRTモニタを使用する場合には、以下の作業を行う。

      2.画像を読み込み、画像の任意の場所のRGB値を元に光全体としてのスペクトルを計算する。

      3.錐体の分光感度を適当に設定し、Boynton色覚モデルをもとに

        「赤<->緑」チャンネル
        「青<->黄」チャンネル
        「輝度」チャンネル
      のそれぞれの応答値を計算する。
    という感じになっている。自分自身でいじることのできるパラメーターはRGBそれぞれのスペクトルと錐体の分光感度である。少し前に「からーふぃくしょん」のwebmasterと話している時に、錐体の分光感度が違う場合には、その違いに応じた「自然な色のつながり」があるんじゃないか、という話になったことがあったので、今回はそれを考慮して錐体の分光感度を自分でいじれるようにしてみた。

     ここに今回作成したtruecolor7を置いておく。細かい使い方は今回は割愛したい。が、多分少し使えば(使う人がいるともそうそう思えないが)、使い方はすぐに判ると思う。

    いつものようにα版なのは言うまでもない。

     truecolor7の動作画面はこんな感じである。
     

    truecolor7の動作画面

     左上から下に向かって、RGBそれぞれのスペクトル設定、全体でのスペクトル、読み込んだ画像、右上から、錐体の分光感度、反対色応答の出力値である。

     画像の任意の場所を調べたければ、BMP画像を読み込んでマウスで好きな場所をなぞるなり、クリックすればよいし、「赤→黄色→緑→青→紫」という単色光のスペクトル色の場合を計算したければ、右下にある「SpectrumColor」ボタンを押せば良い。

     さっそく、赤→黄色→緑→青→紫というスペクトル色の反対色応答「モドキ」を見てみたのが次のグラフである。縦軸が「輝度チャンネル」で、向かって左の軸が「青<->黄」チャンネルで、向かって右の軸が「赤<->緑」チャンネルである。この「輝度チャンネル」・「青<->黄」・「赤<->緑」という「感覚的」3次元空間で波長が一方向に変化するスペクトル色を連続的にプロットしてみると、見事に円状につながっていることが判る。「赤<->緑」チャンネルの計算が基本的にはL錐体出力からM錐体出力の差分をとって、さらにS錐体の出力をほんの少しだけ引いてやるという計算をしているため、短波長側でL錐体の感度がM錐体の感度を上回っている(ように実は設定した)のでこんな風になるのだ。単純に波長が短くなるだけなのに、見た感じ何故か紫と赤が近く見える。あくまで、大雑把な話だけれど。

     中学の頃の私がこれで納得するとは思えないが、少なくとも今の私はこの円環構造を目にすることができればこれで満足である。
     
     

    赤→黄色→緑→青→紫というスペクトル色の反対色応答「モドキ」

     ちなみに、つぎに示すのは輝度が一定になるようにした画像の周辺部をグルッと計算してみたものである。このグラフでは縦軸の「輝度チャンネル」の値はずっと同じで、「青<->黄」チャンネル・「赤<->緑」チャンネル平面内で円環状にグルッと一周しているのがわかると思う。自分自身が下の画像を眺めたときに、つながりが自然だなぁ、あるいは自然じゃないなぁ、と感じる感覚と重ね合わせながら見てみると面白いのではないだろうか。
     

    輝度が一定になるようにした画像の周辺部をグルッと計算してみたもの

     さて、興味がある方がいらっしゃれば、このバッタもんソフトを使って、ぜひ色々なパラメータを振って色々な画像を読み込んで試行錯誤をしてみてもらいたいと思う。そして、その結果を私に教えていただければとてもうれしい。もちろん、このソフトを使うという話に限らず、面白そうなアイデアがあれば大歓迎である。
     

     さて、虹というとミュージカル「オズの魔法使い」の中でジュディ・ガーランドが歌っていた"OverThe Rainbow"を何故か思い出す。実は、このソフトを作っているときも「ふ〜ん、ふ〜ん、ふ〜んふんふふふ〜ん」と歌詞が判らないまま鼻歌を歌いながら作業していた。歌詞が判らないまま、というのも何なので、せっかくなので調べた歌詞で今回の話を終わらせたいと思う。虹の彼方には…
     

     Somewhere, over the rainbow, skies are blue.And the dreams that you dare to dream really do come true.



    ■Powered by yagm.net