2000-08-16[n年前へ]
■エアコンの風は心地よく吹くか?
真夏の夜の夢 流体力学入門編
私は長野県の野辺山という高原で幼い時期を過ごしたせいか、暑さにとても弱い体である。なので、真夏の夜はエアコンが欠かせない体と根性になってしまった。エアコン無しではろくな夢が見られ無いどころか、眠れなかったりするのである。気持ちの良い「真夏の夜の夢」を見るためには、エアコンがとっても重要なのである。
つい先日、そんなエアコンの話題が「今日の必ずトクする一言」に載っていた。それが、
- エアコン用流体素子(PATPEND.)のナゾ
- ( http://www.bekkoame.ne.jp/~jh6bha/higawari.html#000819 )
- 復活する冷蔵庫脱臭剤のナゾ(1/f揺らぎと活性炭編)
- ( http://www.bekkoame.ne.jp/~jh6bha/higawari.html#000901)
(おそらくhiraxさんあたりがやってくれるのではなかろうか)と話題のパスまでされている。いきなり、ボーとしているところを授業で当てられた気分である。
とはいえ、「エアコンの流体力学」というのもちょっと興味のある話題でもあるし、パスされたからにはやってみなければなるまい。そういうわけで、真夏の眠れない夜のパズル代わりに挑戦してみることにした。
さて、部屋の中の「エアコンから送られる風の様子」を計算するということは、流体力学の計算をするということになる。流体力学の運動方程式(ナビエ・ストークス式)に代表されるような方程式群を解かなければならないのである。そこで、以前
の時にいじりかけたMichael Griebel氏らによる非圧縮性流体のNast2Dのコードをもう一度引っ張り出して使ってみることにした。このNast2Dは非圧縮性二次元流れを計算する教育用のソースコードである。詳しくは- TUM INFO V- Homepage - ( http://www5.informatik.tu-muenchen.de/home_us.html )
- Numerical Simulation in Fluid Dynamics A Practical IntroductionISBN 0-89871-398-6
計算するモデルは次の図に示すような部屋である。四畳半一間であるかもしれないし、100畳以上の大きな広間かもしれないが、とにかく正方形の部屋だ。向かって左の青い丸部分にはエアコンがあり、そこから冷たい空気が送られてくるのである。そして、この部屋には何故かタンスがおいてある。「やっぱり、この部屋は四畳半一間じゃないの」というツッコミは言ってはいけない約束である。とりあえず、このタンスが向かって下側にある紫の部分である。このタンスが、エアコンから送られてくる冷た〜い空気流の障害物となるのである。
暑い真夏の夜に、こんな部屋をエアコンで涼しくする時のことを考えてみよう。気持ちよく眠るために、何はともあれエアコンのスイッチを入れるわけだ。そうしないと、暑くて眠れないから当然である。
そして、そのエアコンには送風モードが何故か三つあるのだ。次のような三種類の送風、
- 真っ直ぐ送風するモード
- 単純な首振り送風をするモード
- 山本式エアコン用流体素子を用いた送風をするモード
空気流の速度分布の計算結果を次に示してみよう。
を用いた送風の場合 |
また、これらの場合の計算結果を動画で示したものをMPEG4形式のAVIファイルとReal形式のファイルにしたものを以下に置いておく。エアコンから空気が送られる様子を知るには、何はともあれこの動画を見て頂きたい。なお、手元のRealProducerの制限のために、このReal形式のファイルは古いバージョンのRealPlayerだとアップデートが必要になってしまった。また、MPEG4のCodecが導入されていない場合には、DivXなどをインストールする必要がある。
とりあえず
- 真っ直ぐ送風している場合 MPEG4 AVI ( 289KB ) Real形式( 73KB )
- 単純な首振り送風の場合 MPEG4 AVI ( 577KB ) Real形式( 89KB )
- 山本式エアコン用流体素子を用いた送風の場合 MPEG4 AVI( 693KB ) Real形式 ( 92KB )
また、それぞれのMPEG4形式の動画のファイルサイズを見れば、それぞれの場合の送風による空気流の速度分布の複雑さは一目瞭然である、と思う。真っ直ぐ送風している場合はとにかく単純な速度分布であって動画ファイルサイズも結果的に小さくなっているのに対して、山本式エアコン用流体素子を用いた送風の場合はかなり複雑な速度分布になっていて動画ファイルも結果的に大きくなっているのである。
動画を見ることができない人のために、それぞれの場合の連続した3つの瞬間における部屋内の空気流の速度分布の静止画も示しておく。
1 | 1 | を用いた送風の場合 1 |
これを見ると、「真っ直ぐ送風している場合」にはエアコンの正面は強烈に風が当たっている(つまり冷えまくっている)ことがわかるが、タンスの陰になっている部屋の隅などはほとんど空気が動いていないことがわかる。また、「単純な首振り送風の場合」は送風方向を動かしているとはいえ、その送風方向の変化はかなりゆっくりであって部屋の中の空気流の速度分布はそれほど急激には変化していないことも判ると思う(そういう風に計算しただけではあるが...)。いずれにせよ、もしもこの部屋の中にあなたがいたとしたら、体の決まった部分にのみ冷た〜い風があたることになるわけだ。それは体にはちょっとよろしくなさそうである。
一方、「山本式エアコン用流体素子を用いた送風の場合」は時々刻々と送風方向が変化しており、まるで部屋を舐め回すかのように、冷た〜い空気が送られていることがわかると思う。この部屋の中にもしあなたがいたとしても、体のごく一部分だけに冷たい風が当たるようなことはなく、それほど体に悪くないことが予想されるわけである。
さて、このページもかなり重いページになってきた。本来はこのタンスの裏側の空気が澱みやすい場所の「空気の入れ替わり」を、送風の具合を変えた上で調べてみたいわけであるが、それは次回のお楽しみ、ということにしておきたい。とりあえず、「真夏の夜の夢 流体力学入門編」はここら辺で終わりにしたい。
さて、夏休というわけでこんな景色のところで気持ちの良い風に吹かれてみたりするわけである。この写真の先の方の海の向こうに見えているのは左が伊豆半島で、右が三保の松原の辺である。
暑い夏の夜はエアコンが欠かせない体ではあるけれど、気持ちの上で言えばエアコンよりはおんぼろの扇風機の方が好きだし、扇風機よりも山の上の風の方がずっと好きだ。いつか、山の上を吹き抜ける風の音を録音して、その1/f揺らぎでも調べてみようかなと思うのである... それとも、そんなことをしてもツマラナイだけかな?
2001-01-27[n年前へ]
■オッパイ星人の力学 仏の手にも煩悩編
時速60kmの風はおっぱいと同じ感触か?
本サイトhirax.netは「実験サイト」というジャンルに分類されることが多いようである。何が実験で、何が実験でないのかは私にはよくわからないのだが、とにかく「実験サイト」と呼ばれるサイトは数多くある。そして、その数ある実験サイトの中でも、人間そして愛について日夜取り組んでいるサイトの一つが「性と愛研究所」である。その「性と愛研究所」を読んでいると興味深いことが書いてあった。テレビ番組の「めちゃめちゃイケてる!」の中で何でも「時速60キロの風圧はおっぱいの感触である」と言っていたらしい。そしてまた、「性と愛研究所」では「おっぱいの感触と風圧に関する考察」の中で、「時速60kmでは全然おっぱいの感触ではなくて、ちょうど時速100kmを境に急におっぱいの感触を感じます。」というメールを紹介しながら、
「時速100kmの風では、本物は触れないけどお手軽に疑似体験、名付けて『プリンに醤油でウニ』ではなくなってしまう。それでは、まるで『キャビアにフォアグラでトリュフの味』だ。青少年のために疑似おっぱいを探してあげる必要があるな。」と結論づけている。
この「時速60kmの風」現象は「できるかな?」的にとても興味深いと思われるので、今回じっくりと考えてみることにしてみた。そして、この結論に何らかのプラスαをしてみたいと思う。
そう、前回「オッパイ星人の力学 第四回- バスト曲線方程式 編- (2001.01.13)」でオッパイの表面で働いている力について考えてみたのは、実は単に今回・そしてさらに次回の話のための準備だったのである。(さて、ちなみに今回は会話文体をメインに話が進む。「性と愛研究所」ではないが、この手の話は会話文体の方が書きやすいように思うし、私のバイブル「物理の散歩道」でも「困ったときの会話文体」と言われていたので挑戦してみた次第である。言うまでもないが、AもBも私が書いてはいるが、私自身ではない。)
A : 「東名高速で出勤途中に確認してみたんだが、やはり時速100kmあたりが妥当な感じだったな。」
B : 「何を根拠に妥当なのかがよくわからないが、確かに時速60kmでは手に何かが触っているという感触すらないな。それにしても、哀しい出勤の景色だぞ、それ。」A : 「ほっとけ!だけど、少し考えてみると、このおっぱい(ニセモノ)の感触問題は結構面白く、技術的にもなかなかに深い話だと思うんだよ。」
B : 「はぁそうですか…、としか言いようがないな。」A : 「まぁ、聞け。何しろこのおっぱい(ニセモノ)の感触問題には流体力学のエッセンスがぎっしりと詰まっているんだからな。」
B : 「そんな話は聞いたことはないが、とりあえず聞かせてもらおうか。」A : 「このおっぱい(ニセモノ)の感触問題を解くためには、とりあえず車の窓から手を出したときの指の周りの空気流を計算すれば良いわけだ。」
B : 「ちょっと待て。何で指の周りなんだ。手のひらじゃなくて?」A : 「簡単なことさ。試しにおっぱいを揉む仕草をしてみろよ。」
B : 「こ、こうか?あぁっ?手のひらじゃなくて指で揉んでるっ!」A : 「そうだろ。何故かわからないが、おっぱいを揉む仕草=Mr.マリックが超魔術をかける時のような指使いらしいんだよ。」
B : 「うむ、確かにそのようだな。」A : 「だから、時速60kmの風からおっぱいの感触を受けているのは指先だと考えるのが自然だろ。それなら、とりあえず下の図のような「指の間を抜けていく空気の流れ」を計算してみれば、おっぱい(ニセモノ)の感触問題が解けるわけだ。」
B : 「実写の手に二次元の計算結果を三次元的に合成するという凝った処理が、実にクダラナイことに使われている例だな…」
高速で走る車の窓から手を出して、その手の指の間を抜けていく空気の流れを計算しよう。 鉛直方向の指の等方性を考えて、右の図に示すような指を輪切りにするような水平面のみを考える。 こんな写真を撮るときに、自己嫌悪に陥りがちなのは何故だか知りたい今日この頃。 |
A : 「こういう「空気の流れ」ような流体の力学は、ニュートンのプリンキピアに始まり、オイラーとベルヌーイにより非圧縮・非粘性の理想流体の運動方程式とエネルギー保存則が導かれた。それがオイラーの運動方程式とベルヌーイの式だ。オイラーの運動方程式はちなみにこんな感じだ。」
加速度 = 外力 + 圧力勾配力 v : 速度 |
A : 「基本的には「加速度 = 外力 + 圧力勾配力」という形だな。この非圧縮・非粘性の理想流体の場合はラプラシアンがゼロのポテンシャル流れと呼ばれる単純な流れになる。試しに、そんな場合をNast2Dを元にしたプログラムで計算してみた結果はこんな感じになる。ホントはこの計算自体は完全な理想流体ではないのだが、まぁ大体はこんな感じだ。」
B : 「おっ、あっという間に計算したな。」A : 「まぁ、ポテンシャル流れならエクセルでもちょちょいと計算できるくらいだからな。ちなみに、これは窓から手を出してしばらくしてからの空気の流れだ。」
A : 「で、どうだ?」
B : 「いや、どうだ、と言われても困るが、なんかキレイだな。だけどちょっと小さくて見にくいなぁ。」A : 「そう言われれば確かにそうだ。じゃぁ拡大してみるか。」
B : 「で、この結果から何がわかるんだ?」A : 「この図で空気は左から右へ流れているわけだが、左端の空気の速度と右端の空気の速度は、実は同じなんだ。」
B : 「そう言われても、よくわからないが?」A : 「指を通り過ぎてく空気は、指をとおる前後で運動量がそのまま変わってないってことさ。つまり、空気は指を通り過ぎる時になんら抵抗を受けてないってことだ。」
B : 「えっ?おかしいじゃないか、それなら逆に言えば指も空気から何の抵抗を受けないってことか?」A : 「そういうことだ。これがダランベールのパラドックスだ。」
B : 「じゃぁ、何か?この指先に感じるまぎれもないおっぱいの感触は幻だとでもいうのか!? そんなのオレは認めないぞ!」A : 「まぎれもない、っていうほどのものでもないし、ニセモノおっぱい自体は何か一種の幻のような気もするが、もちろん感触自体は幻であるハズはない。そもそも、空気をサラサラな理想流体として取り扱ったところが間違っているわけだ。そこで、登場するのがナヴィエとストークスだ。彼らはオイラーの運動方程式に粘性を導入した。全てはおっぱいの感触を説明するために、だ。」
B : 「それウソだろ。ナヴィエとストークスが聞いたら怒るぞ。」
加速度 = 外力 + 圧力勾配力 + 粘性力 v : 速度 |
A : 「見ればすぐわかるだろうが、この非圧縮流体に対するナヴィエ・ストークスの方程式は、最後に粘性項が入っている以外はオイラーの運動方程式と全く同じだ。」
B : 「なるほど。こうしてみると意外に簡単な式だな。」A : 「あぁ、オイラーの運動方程式に粘性項が入っただけだからな。そのせいで計算はちょっと複雑になるが、最近のパソコンならノープロブレムだ。というわけで、粘性を考慮して計算してみた結果が次の図だ。」
B : 「おっ、ちょっと様子が違うな。何か、ジェットエンジンみたいに尾を引いてるぞ。」A : 「そうだろ。指の後ろのl様子がずいぶんと違うだろう。で、これを拡大してみたのが次の図だ。」
B : 「左端の空気の速度はもちろんさっきと同じだが、指の後ろでは空気が渦巻いているし、右端の空気の速度は全然違うな。」A : 「もっとリアルに、窓の外に手を出したときの、指の周りの空気の動きを時間を追って計算してみた計算結果のアニメーションが次の図だ。指の周りに空気が渦巻いていく様子がよくわかるハズだ。」
窓の外に手を出したときの、指の周りの空気の動きを時間を追って計算してみたもの。指の周りに空気が渦巻いていく様子がよくわかる。 メッシュを細かく切ったおかげで、計算結果は1GB弱。なんてこったい。 |
B : 「指が空気の中を走り抜いていく様子がよくわかるな。確かにこれなら、空気の抵抗を受けまくりだな。」A : 「そうだ。空気は指から力を受けるし、逆に、指は空気からしっかりと力を受けるわけだ。」
B : 「なるほど、この計算結果は指先に感じるまぎれもないおっぱいの感触を説明しているわけだな。いい感じじゃないか。流体力学そして粘性項さまさまじゃないか!」A : 「あぁ、それも全てナヴィエとストークスのおかげだ。」
B : 「おやっ?ちょっと待てよ!これでは、ただ現実を説明してみただけで、何の解決にもなってないぞ!時速60kmと時速100kmの風の感触の差を説明しているわけでもないし、青少年のためのもっと安全な擬似おっぱいを提供しているわけでもない!」A : 「いや、それがそういうわけでもない。実はこの先があるんだ。このナヴィエ・ストークスの方程式の解はレイノルズ数という無次元数によって決定されるんだ。今回の場合で言うと、レイノルズ数は「指の直径x 車の速度 / 流体の運動粘性率」という形になる。そして、このレイノルズ数が大きくなるほど渦が延びていくんだ。」
B : 「なるほど、わかってきたぞ。つまりあれだな。時速60kmから時速100kmに速度を上げれば、それに応じてレイノルズ数が大きくなって、空気の渦もおおきくなるし、おっぱいの感触も確実なものになるわけだな。勉強になるな。」A : 「う〜ん、実際には密度の違いの方が大きいんだが、ナヴィエ・ストークスの方程式の理解としてはそれでいいかもな。あと、単にレイノルズ数を大きくしたかったら指を太くする、っていうのでもいいわけだ。」
B : 「そう言われても指の太さはなかなか変えられないしなぁ。」A : 「指サックとか色々手はあると思うが、もっといい方法がある。さっきの式を眺めてみれば流体の運動粘性率が小さくなれば、レイノルズ数は大きくなる。例えば、水の運動粘性率は空気のそれの十五分の一だ。」
B : 「ってことは、水の中だったら、レイノルズ数も大きいし、密度も大きいし、指先に抵抗を受けまくりってことだな。すると、水中で手を動かしてみれば、それは空気中の高速クルージングと同じってことになるな!」A : 「そうさ、風呂の中で手をひとかきすれば良いだけの話さ。何もわざわざ時速100kmの車の窓から手を出す必要はないんだ。実際、風呂の中で確かめてみたけど、なかなかイイ感じだ!」
B : 「時速100kmで走る車の窓から手を出すのに較べれば、風呂の中で手をひとかきすれば良いだけなんて、まさに青少年のためのもっと安全な擬似おっぱいだな!」A : 「あぁ、それも全てナヴィエとストークスのおかげだ。」
B : 「それはもういいっ言ってるだろ。」A : 「ところで、ふと考えてみたことがあるんだ。さっき、指を太くすれば遅い速度でもレイノルズ数が大きくなるって言っただろ。東大寺の大仏なんかかなり指が太いじゃないか。」
B : 「確かに、そうだな。」
A : 「今調べてみると、大仏の掌の長さは256cmだ。つまり普通の人間の10倍くらいある。だったら、指の太さも10倍はあるだろう。ってことは、ほんのそよ風が吹いただけでも、大仏の手にはしっかりとしたおっぱいの感触が感じられているんじゃないのかな?」
B : 「単に手が大きいから空気の抵抗も大きいだけどいう気がしないでもないが、指の長さもでかいしさぞかし超巨乳の感触かもしれんな!そう考えると、あの大仏の手も何か実にイヤラシイ手つきに見えてくるから不思議だな!」A : 「う〜ん、悟りを開いているから、指先のヘンな感触なんかには惑わされないんだとは思うけどな。しかし、案外と仏もそんな煩悩と日夜闘っていたりするのかもしれないなぁ。しかも、その煩悩がホントーにあるのかもよくわからない幻のような擬似おっぱいってところが面白くないか?大仏の指先は二十一世紀の煩悩そのものを暗示しているのかもしれん。仏の手にも煩悩ってところだな!」
B : 「言いたい放題だな、全く。」
さて、今回は「オッパイ星人の力学第四回 - バスト曲線方程式 編- (2001.01.13)」と繋がるところまで話が辿り着かなかった。おっぱいの表面張力、マボロシのような指先の流体力学、そして大仏の煩悩をめぐる大河ドラマは人生そのもののようにまだまだ続くのである。
2001-05-20[n年前へ]
■オッパイ星人の力学 あなたのオッパイ星人度 編
擬似オッパイに関するhiraxの関係式
オッパイ星人シリーズも第六回である。いつの間にか、「片手」で数えられる回数を超えてしまった。前回の話では、大仏が差し出す「片手」も実は擬似オッパイの感触を楽しんでるのかもしれない、という結論だった。今回はそんな「時速60キロの風圧はおっぱいの感触か?」という問題の続きを少し違うアプローチで考えてみたい。そして、そもそもの出発点「時速60キロの風圧はおっぱいの感触か?」を考え直すとともに、前回の目的「そんな危ない擬似オッパイではなくて、青少年のためにもっと安全な疑似おっぱいを探す」ということについても考え直してみたいと思う。
まずは、簡単な「あらすじ」を先に書いておこう。
なんでも、テレビ番組の「めちゃめちゃイケてる!」の中で「時速60キロの風圧はオッパイの感触である」と言っていたらしい。そしてまた、人間そして愛について日夜取り組んでいる「性と愛研究所」の「おっぱいの感触と風圧に関する考察」中で、「時速60kmでは全然オッパイの感触ではなくて、ちょうど時速100kmを境に急にオッパイの感触を感じます。」というメールが紹介され、擬似オッパイの感触を受けるのは時速100km以上だと結論づけられている。前回、私自身も東名高速で出勤途中に確認してみた感じでは「時速100km/h」以上が妥当に思われた… と、その時は思われたのだが、先日またもや東名高速で出勤途中にふと実験し直してみると何か違うのである。「時速100km/h」では風圧が強すぎるのだ。「時速60km/h」でも「何やら十分イケてる感じ」に思えたのである。「オヤ?これは一体どういうことだ?」と私は疑問に思うと同時に、そういえば「時速60キロの風圧はオッパイの感触か?」という問題を長いこと放り出していたなぁ、久しぶりにアレをやってみるかぁ(遠い目)と思い筆を取る次第である。
この前、
では車の窓から突き出した掌の指の形状を考えながら、その指の周りの空気流の計算してみた。もちろん、こういった形状的なアプローチも必要なのであるが、原理的なものを考えようとした場合にはそれはちょっと応用編すぎる。今回は単純な近似則を使って、「風圧はどの程度の大きさなのか?」「そして、その風圧の大きさはどの程度のオッパイの大きさなのか?」という風に考えていくことにしよう。 まずは、下に示すのが単純な手と複雑な手だ。左が私の掌で、右が私の目標ドラえもんの掌である。私の掌は結構複雑な形状をしている。それに対して、ドラえもんの掌の方は極めて単純、球そのものである。もう、ツルツルの球そのまんまなのである。
複雑な私の掌の方は、さすがに複雑というだけあって掌の周りの空気流なんかを計算しようとすると、結構それは複雑だ。何しろ、前回は簡単な空気流の計算を行っただけでも出力ファイルは1ファイル当たり1Gバイト程になった位である。
しかし、右のようなドラえもんの単純な掌の場合はどうだろう?ツルツルの球そのまんまの掌は空気流により、どんな力を受けるだろうか?こちらの場合も計算は複雑なのだろうか?
実は、このツルツルの球そのまんまの掌の場合はそれほど計算は難しくないのである。一般的に、速度vで動く半径rの球が受ける「空気の粘性により生じる抵抗力」はストークスの法則により、
- 粘性抵抗
と表されることが知られている。ここで、ηは空気の粘性率である。標準状態の空気ではη=1.82x10^-5(kg/ms)である。式を眺めれば判るように、この粘性抵抗は球が動く速度vに比例した大きさになる。
どうして粘性によって抵抗力が生じるかはまた別の回で考えることとして、とりあえず掌が受ける抵抗にはもうひとつ大きなものがある。それが、一般的に「慣性抵抗」と言われるものである。こちらの方は、掌が静止している空気の「いわゆる」速度を変化させることによる抗力であり、半径rの球に対しては近似的に、
- 慣性抵抗
ツルツルの球形状の掌の半径rは、私の掌を握りしめた時の大きさを参考にして0.1(m)としてみた。もちろん、このサイズではちょっとでかすぎるわけだが、実際の掌の形状はもっと複雑で空気抵抗が大きいことを考慮して、実際の掌の受ける力に近づけるために大きめに設定してみた。
さて、掌を窓から出す車の速度を時速60km/hとか100km/hとかいった辺りで
という条件下で計算を行うと、粘性抵抗よりも慣性抵抗の方がはるかに大きく、掌の受ける力はほとんど慣性抵抗である。試しに、これらの数値を使って窓から出した(単純な)掌が受ける力を計算してみたのが次のグラフである。このグラフを見れば、窓から出した掌が受ける力が車の速度の二乗に比例していることが判ると思う。なお、ここで掌が受ける力の単位は(g重)に換算したものである。オッパイ星人の力学を考えるときの単位はkgでなくて、gの方が使いやすいのである。まずは、このグラフを見ると時速60kmでは掌に300g重位の力を受けていることが判るし、それが時速100km程度になれば大幅にその力は増えて800g重程度になる。掌にズシっと力を受けるわけである。
さて、掌が受ける力が判ってしまえば、こっちのものだ。何しろ、こっちには懐かしのオッパイ星人の力学シリーズ第一回
で計算した「胸のカップ数とオッパイ一個あたりの重さ(g)」(もちろん、この「オッパイ一個あたりの重さ」の値はどうにもおかしいところがたくさんあるのだが、そこはそれ女性の神秘(トリック?)なのである)がある。これを使って、窓から出した掌が受ける力を比較してみることにしよう。この「オッパイ一個を持ち上げるときの掌が受ける重さの感覚」を「窓から出した掌が受ける力」と比較してみる。すると、窓から出した掌が感じる擬似オッパイがどの程度の大きさであるかが判ることになる。極めてバーチャルな擬似オッパイのカップサイズが判るわけである。
というわけで、下に示したグラフが
- 窓から出した掌が受ける力 ( g重換算 )
- 胸のカップ数とオッパイ一個あたりの重さ(g)
おやっ、なかなか良い対応が見られるではないか!時速60km/hというと、C〜Dカップ位のオッパイの感覚で、時速100km/hだとFカップ位である。時速30kmでもA〜Bカップ位のオッパイを持ち上げる位の力を窓から出した掌は受けていることになる。
ということは、各人の「擬似オッパイを感じる速度」が判れば、「その人が願うオッパイのサイズ」が判るのではないだろうか?そして、もし「その人の願うオッパイのサイズ」が結構大きければ、それはすなわちオッパイ星人度が高いということになるし、「その人の願うオッパイのサイズ」が小さければオッパイ星人度が低いということが判るわけである。
例えば、先の「時速60kmでは全然オッパイの感触ではなくて、ちょうど時速100kmを境に急にオッパイの感触を感じます。」というメールの書き主の思うオッパイのサイズは何とFカップである、ということが判るわけだ。実際のところ、何が標準かどうかは判らないが、Fカップというのはかなりな巨乳に思えることであるし、このメールの書き手はとてもオッパイ星人度が高い、ということになる。
ぜひ、あなたもこのグラフを片手に、走る車の窓から手を突き出し、掌に受ける擬似オッパイの感覚を確かめて欲しい、と思う。そして、「擬似オッパイの適正速度」を頼りにあなたのオッパイ星人度をチェックして欲しいのである。そして、その結果を是非私(jun@hirax.net)まで知らせて頂けたら幸いである。
さて、前回「安全な擬似オッパイ」を探すべく考察をしてみたわけだが、実は考え直すべきは「人の願うオッパイのサイズ」であったのかもしれない。Eカップ巨乳を願うから時速100km/hが必要だったのであって、Cカップで満足すれば、時速60km/hで十分だったのである。そして、Aカップを願うならば、スクーターでもオッケーの時速30km/hでこと足りるのである。そう、実は車の窓から掌を突き出す擬似オッパイはとても安全なものだったのである。その本来安全な「車の窓から掌を突き出す擬似オッパイ」を危険たらしめていたのは、「高すぎるオッパイ星人度」だったのである。
というわけで、交通安全、そして世界平和へ通じる道は、実はオッパイ星人度を低くしていくことにあるのかもしれない、と思う今日この頃なのであった。
2003-05-04[n年前へ]
■スカしッ屁の風速ベクトル
おならの流体力学 放出口外側のパンツ内側編
少し前まで、米軍のステルス戦闘機などの話をニュースで見かけることが多かった。ステルス戦闘機といえば、それはもちろんレーダーには映らないわけで、「音はすれども姿は見えない、まるでアナタは屁のような」戦闘機なのである。これが通常の戦闘機の場合であれば出撃したりするとレーダーに写ってしまって大きな襲来警報のサイレンとともに迎えられたりするわけであるが、ステルス戦闘機の場合にはそんな襲来警報の音もなくいきなり出現するわけで、いわば音を伴わない「スカしッ屁」のようなオソロしい戦闘機なのである。しかし、ステルス戦闘機もオソロしいのだが、スカしッ屁だって十分オソロしい。何しろ、「音のしないおならは臭い」「スカしッ屁は臭い」とよく言われるほどそのに臭いは強烈だとされているのである。スカしッ屁は、ステルス戦闘機のごとくいきなり我々の鼻腔奥深くに達し、そして姿を現した瞬間にはもう我々の体の鼻の奥にその恐怖の毒ガスを充満させていくのである。
ところで、ステルス戦闘機の恐ろしさはともかく「音のしないおならは臭い」というのは本当なのだろうか?当たり前のように口にされる「スカしッ屁は臭い」というセリフであるが、それは何か事実に基づいたものなのだろうか?そんなことはきっと誰しも一回は不思議に思ったことがあるに違いない。そこで、資料などを調べてみると実際にスカしッ屁は臭いという科学的根拠があるらしい。何でも、音がするしないは大抵の場合「おならの量」で決まるらしく、おならの量が多い場合には音がして、おならの量が少ない場合には音がしないというのである。そして、量が多いおならの原因は穀物を食べた時にでんぷんや繊維質が発酵して発生するメタンガスで、それはほとんど臭くないというのである。ところが、量が少ないおならの場合には、そのおならの原因は肉類の蛋白質・脂肪類が発酵して発生するアンモニア・インドールなどで、これが実に臭いというのである。だから、量が多いおならすなわち音が出るおならは臭いけれど、「量が少ないおなら」つまり音のしないスカしッ屁は臭いというのだ。統計的には「臭くないスカしッ屁は気づかれない」から「気づかれるスカしッ屁は必ず臭い」「だからとりたててスカしッ屁が臭いわけではない」という理屈も成り立ちそうなものだが、そんな理屈はさておき「スカしッ屁」の臭いは事実オソロシいものらしい。
「スカしッ屁」の臭いが事実オソロシいとすると、音もなく訪れるそんなオソロシイ兵器から私たちはどのようにして身を守れば良いのだろうか?音もなくいきなり鼻腔に忍び寄ってくる「スカしッ屁」という恐るべき化学兵器からどのようにすれば身を守ることができるのだろうか?そこはもちろん、身を守るためにはまずはその対象をよく知らなければならないのである。敵を知らずして敵に勝つことはできないのである。「スカしッ屁」から身を守るためには、「スカしッ屁」をよく知らなければならないのである。別にそんなことを知りたくもない、という気持ちはもちろんココロの奥底に強く強くあるのだけれど、身を守るためにはそんなことは言っていられないのである。自分のみを守るためには、私たちはおならについて少しばかり考えてみなければイケナイのだ。…というわけで、今回はおなら(毒ガス)が体内から放出(放屁)されたのちに、オナラ放出口近辺で起きている現象を考えてみることにしたい。
今回は、まずはオナラが体内から外に放出された瞬間を考えるために、とりあえず「音のするオナラ」と「スカしッ屁」が「黄門様」から放出されたあとの噴出風速ベクトル(放屁ベクトル)をナヴィエ・ストークス方程式の計算エンジンにNaSt2Dを使って計算してみた。計算領域は放出口の外側、パンツの内側というごく狭い領域である。計算領域の左中央辺りに黄門様が位置しており、計算領域の右側にはパンツがある。また、ここではパンツと言ってもビキニやブリーフのようなピッタリお肌に密着タイプではなく、トランクスのように肌との間に空間が存在するタイプを仮定している。そして、「音のするオナラ」の場合には強く早く小刻みに「ブーッ」っとオナラが放出口から放出され、「スカしッ屁」の場合には「スーッ」と弱~くオナラが黄門様から放出されることにしてみた。下の二つのグラフが、そのようにして計算してみたオナラが出たときの黄門様の外側パンツの内側における「音のするオナラ」と「スカしッ屁」のオナラ噴出風速ベクトルである。音でいうなら、左が「ブーッ」で、右が「スーッ」なのである。
もちろん、言うまでもなく上の計算は実に大雑把で簡易的なものだが、「音のするオナラ」の場合には、おならの風速ベクトルの方向が刻々変わり、またその大きさも大きいことから、放出口外側ですぐに急速に拡散してしまうことが予想される。すなわち、毒ガス濃度がパンツ内ですぐに薄まり、おならガスの危険度が低下していることが判る。黄門様の外側パンツの内側でおならガスが急速に拡がっているようすが目に浮かぶようである。絶対に、目に浮かべたいとは思わないのだがこのグラフを見るとそんな様子がまぶたの裏にまざまざと浮かんでしまうのである。
それに対し、「スカしッ屁」は「スー」っと滑らかに出るがために毒ガスが拡散せず、放出口を出た後も毒ガスの危険濃度を保ったまま「まとまったガス雲」として戦隊飛行を続けていくことが予感される結果なのである。「スカしッ屁」はその毒ガス成分だけでなく、そのガス拡散度合いも考えてみる価値もあるかも知れない(考えたくないが)、とも思わせるのである。
というわけで、今回は何とも中途半端な計算をしただけで、オナラの風速ベクトルを予想しそのオナラの運命に考えを巡らせてみたのであるが、その中途半端さには実は理由がある。何しろ、これまでスクール水着、疑似オッパイ、山本式エアコンなどさまざまな物体に対する流体計算をしてきたが、今回の黄門様近くのスカしッ屁の風速ベクトル計算ほど何ともやる気がおきず、気が乗らず、頭の中で計算対象を想像したくないものも初めてなのである。対象物を強く心の中でイメージできなければ、まともな予想などもできないわけであるが、どうにもパンツの中のオナラをイメージしたくなかったのである。そのせいで、どうにも中途半端な結果になってしまったのである。
あぁ、こんなことではオナラから身を守ることができないぞ、おならを心の中で強くイメージしなければイケナイぞ、と強く自分を戒め、続編へ向けてがんばらなければと思う今日この頃なのである。が、しかしまた、おならを心の中で強くイメージするのと、オナラから身を守るのであればどっちが重要か少し悩んでしまい、続編もちょっと…と思ったりもする今日この頃なのである。
2006-10-09[n年前へ]
■「オッパイ星人」だって、ハッカーになりたい……!?
■ 「ハッカー」でない私ですが…
高校時代の同級生だった川合史朗さんからバトンが回ってきましたが、私は「ハッカー」ではありません。コンピュータを使い出したのは'80年くらい*1でしたから、コンピュータ歴だけは長いことになります。けれど、プログラミングをしていたと言えるのは、地震予知のための計測システム開発*2のためにCで岩盤変形のシミュレーション・プログラム*3を組んでいた大学院時代だけで、「ハッカー」の「ハ」の字も知らないうちに現在に至ってしまいました。たまに、遊びで小さなプログラムを作ることもありますが、アイデア一発型のネタばかり*4で作った後はいつも放置してしまう…という情けない状態です…。
そんな私ですが、スイカに塩を振りかければより甘くなる、という例もあります。ハッカー猛者の方々に「ハッカーになれなかった人」が混じってみるのもちょっと面白いかもしれない*5と期待し、ハッカーの気持ちを適当に想像(妄想)しながら*6、思いついたことを書いてみます。
*1 あまり表だっては言いづらいのですが、秋葉原でapple][ コンパチの部品を買って組み立て使っていた世代です…。
*2 この研究を数年後に引き継いでいたのが「スーパー・ハッカー」近藤淳也 はてな社長です。私とはまさに天と地ほどの差がある方です…。
*3 そのときに使った参考書が「C言語による有限要素法入門」著者は(今ではベストセラー推理小説を量産する作家として有名になってしまった)森博嗣氏です。
*4 日本語変換のATOKにPerl・Ruby・Cなどで各種拡張機能をさせるプログラムとか、ノートPC内蔵の加速度センサを利用して立体ディスプレイモドキを実現するソフトとか…。
*5 なにしろ、川合さんが私にバトンを放り投げた理由も「見慣れた面子ばかりだと面白くないので、趣向を変えて(ハッカーというわけではないが)平林さんを」なのですから… _|‾|○
*6 2006年3月号で高林 哲氏がハッカーの習性として書かれていたハッカー精神「深追い、佳境、バッドノウハウ」と共通することもあるかもしれません→「オッパイ星人とバッドノウハウ」を参考に。
■ 「自分のための勉強」を楽しくやろう
就職して数年した頃、「自分の知識・技術を向上させる機会」や「考えたことを残しておく場所」がほとんどないことに気づきました。そこで、自分が知りたいことを定期的に学び・考えてみることにしたわけです。そして、その「学び・考えた」結果を残しておく場として作ったのが、"hirax.net"です。ですから、サイト"hirax.net"というのは私にとって「自分のための勉強ノート」です。
当初、この「自分のための勉強ノート」は勤務先のイントラ内サイトとして作りました。しかし、企業内インフラの利用制限が厳しくなってきたこともあり、'98年頃に勤務先のイントラ内部から外のインターネットの世界に引っ越して、現在の"hirax.net"になりました。また、それと同時に「自分のための勉強ノート」の内容を「役に立たない(ように見える)こと」に変えました。それは、「書く内容を業務から離れたものにする」ためです。企業内で研究開発という仕事をしていると、やはり業務内容に近いことを考えていることが多いわけですが、そういう内容を外で公開するわけにはいきません。そこで、(勤める会社のためでなく)自分自身のために「高度な技術」を勉強するけれど、その技術を適用して考えてみる対象・内容は「実利的には何の役にも立たないこと」にしよう、と決めたわけです。
その結果、流体力学のナヴィエ・ストークスの方程式の解法プログラムの勉強をするけれど、その計算対象は「スクール水着の周りの水の動き」であったり…、有限要素法のプログラムを勉強はするけれど、その解析対象は「女性のバスト」であったり「男性のアレ」だったり、ということになってしまいました…。つまりは、それが、"hirax.net"の「高度な技術を無駄に使う」というスタイルです。そういうスタイルにしたことで、「自分の勉強」を楽しくやることができました。何しろ、難解な流体力学の教科書も(女性のバストと同じような感覚を空気抵抗で再現することができると想像すると)ワクワクする気持ちで読むことができますし、行列計算プログラムを作る作業も(女性のバストの変形を計算できると思えば)素晴らしく楽しい作業に変わるのですから*7。
*7 男とはそういうものです(女性読者の方々へ)。なお、女性のためには、科学の粋を凝らした「豊胸ブラジャー」「美人化ソフト」も用意しています。
■ 「やりたいこと」はやってみないとわからない
「自分のための勉強ノート」ですから、いつでも私は「自分がやりたい」勉強をしていました、と言いたいところですが、そういうわけではありませんでした。なぜかと言うと、「自分のやりたいこと(勉強したいこと)」はこれだ、と自分でハッキリわかっていなかったからです。「(自分がやりたい)何か一つのこと」がよくわからないまま、「ずっと、その場その場で気になったことを勉強して(遊んで)きた」感じでした。その瞬間その瞬間の好奇心の赴くままに、目の前の謎・パズルを(その秘密を解くことができそうな科学技術を勉強しつつ)、楽しみながら考え続けるということを長く続けているうちに、自分のやりたいこと、「楽しくなる科学技術」という方向性*8がようやく見えてきたというのが本当のところです*9。
「やりたいこと」をいきなり思いつき、一晩ノリノリ体力バリバリにプログラミングをして、それを作り出すことができるスーパー「ハッカー」も世の中にはいるだろうと思いますが、私のように、「自分のしたいこと」を自分自身でもよくわからないという方も多いと思います*10。そんな人(時)は、とりあえず何でもいいから続けてみるのもコツだったりするのかもしれません。そうすれば、「将来長い時間をかけて自分がやりたいこと」も浮かび上がってくるだろうし、そういった「将来・現在やりたいこと」が「これまでにやったこと」と繋がってくること*11も多いと思うのです。
*8 Tech総研の編集者いわく「平林さんのやりたいことは、科学技術と男と女ですね、」だそうですから。
*9 「数字がバラバラに書いてあって、その数字を順番になぞっていくと最後に絵が浮かび上がるパズル」みたいなものですね。
*10 川合史朗さんが訳されたPaul Grahamの「知っておきたかったこと」には、若い人がやりたいことを見つけるにはどうしたら良いかが書かれています。
*11 自分用のプログラム・ライブラリを作っていくと、作業が楽になるようなものです。
■ 「長く続ける」コツ
「とりあえず何でもいいから続けてみる」と書きましたが、「続けるということ」は実は難しいことだろう、と思います。(飽きっぽさでは天下一品の)私が比較的長く続けることができた理由の一つは、「その瞬間その瞬間の好奇心の赴くまま」=「いつでも、その瞬間に好きなことを楽しんでいた」からだったと思います。だから、飽きることなく(内容は実は変わっているわけですから)続けることができたわけです。
「自分の好きなことをする」と長く続けることができると思うのですが、そのためには「自分の好きなことを見失わないようにする」ことが必要です。そして、「自分の好きなことを見失わないようにする」ためには、「他人の感想を(あんまり)気にしない」ということが一番です。一回、自分のイメージをどん底まで突き落としてみるのも良いかもしれません*12。
自分が「これは凄い!」と思うことが、他の人にとっては「これ、何だか全然面白くないなぁ…」と感じられることはよくある話です。人それぞれ、好みも背景も色々なことが違うのですから、それは当然です。「ただ一つの正解があるようなこと」を追求したいなら別だと思うのですが、そうでない「自分の好みを追求」しようとするならば「他人を参考にして学ぶのは良いけれど、あんまり他人の感想は気にしない」ということが結構良いような気がします。他人の感想を気にしすぎると否定的な感想に凹んでしまうこともありますし、他人の期待に沿ってやることを変えていってしまうと、いつの間にか「自分の好きでないあたり」まで流れていってしまうことも多いと思います。
*12 私の場合、「オッパイ大好きな変態じゃないの?」というような感想を言われまくりで、自分のプライドなんかどっか遠くに消えていってしまいました。その結果、他の人の感想(的確な指摘とも言う)を気にしないというワザが使えるようになったのです…。
■ やっぱり他の人に伝えたいから「わかりやすく」
他人は自分とは違うものですから、他の人をあまり気にしないようにしたいと思ってはいます。それでも、やっぱり「自分が楽しいと思うことを他の人に伝えたい」とも思っています。自分が面白いと思うことを見つけた時、それに共感してくれる人がいたらうれしいものです。他の人を過剰に気にしないようにした方がいいとは思う一方で、「自分の考えたこと・感じたことを他の人に伝え」「自分の作ったものを公開する」上で「他の人にもわかりやすく・他の人が眺めやすい」ようにしようという試行錯誤は続けていこうと思っています*13。
*13 そんな「他の人に伝える」ための試行錯誤の結果、面白く人にわかりやすくプレゼンテーションをするにはどうしたら良いか?という書籍「理系のためのプレゼンのアイデア」を技術評論社から11月に刊行予定です
■ 「バトン」が次に飛ぶ先は…?
さて、次回へのバトンは増井俊之さんに渡そうと思います。「わかりやすさ」「スーパー・ハック」を華麗に両立させている増井さんの秘密を伺ってみたいと思います。